Homogeneous quaternionic Kähler structures on 12-dimensional Alekseevsky spaces ${ }^{\text {² }}$

Marco Castrillón López ${ }^{\text {a,* }}$, Pedro M. Gadea ${ }^{\text {b }}$, Jose A. Oubiña ${ }^{\text {c }}$
a Departamento de Geometría y Topología, Facultad de Matemáticas, Avda. Complutense s/n, 28040-Madrid, Spain
${ }^{\text {b }}$ Institute of Mathematics and Fundamental Physics, CSIC, Serrano 144, 28006-Madrid, Spain
${ }^{\text {c }}$ Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain

Received 12 December 2006; received in revised form 25 April 2007; accepted 22 May 2007
Available online 8 June 2007

Abstract

For each Alekseevsky space of dimension 12, its description as a homogeneous Riemannian space, and the homogeneous quaternionic Kähler structures that it admits through Witte's refined Langlands decomposition, are given. (C) 2007 Elsevier B.V. All rights reserved.

MSC: primary 53C26; secondary 53C30; 53C35 Keywords: Alekseevsky symmetric spaces; Homogeneous Riemannian structures; Homogeneous quaternionic Kähler structures; Parabolic subgroups; Refined Langlands decomposition

1. Introduction and preliminaries

1.1. Introduction

Quaternion-Kähler symmetric spaces were classified by Wolf [14] and homogeneous quaternionic Kähler structures were classified by Fino [8] (cf. [5]). The study of the types of homogeneous quaternionic Kähler structures appearing on negative quaternion-Kähler symmetric spaces arises as a natural question. These spaces are Alekseevskian (Alekseevsky [1], Cortés [7]). That study was started in [5] for the quaternionic hyperbolic space and in a previous paper by the authors [4] for the case of dimension 8 .

In the present paper we obtain, for each Alekseevsky space of dimension 12, the homogeneous quaternionic Kähler structures that it admits through Witte's refined Langlands decomposition [13]. We first find the connected closed cocompact subgroups acting transitively by isometries on each one of the 12-dimensional Alekseevsky spaces. We further obtain the type of homogeneous quaternionic Kähler structures on each of these spaces, in terms of the five primitive classes $\mathcal{Q K}_{1}, \ldots, \mathcal{Q} \mathcal{K}_{5}$ in Fino's classification. Theorem 5 sums up some of the results throughout the paper.

[^0]On the other hand, it is well known that Alekseevsky spaces play an important role in $d=4, N=2$ supergravity, as target spaces of the hypermultiplet sector of sigma models (see among others Cecotti [6], de Wit and van Proeyen [12]). To quote but an example of the interest in physics of the spaces studied in [4] and in the present paper, we recall that they are spaces originated by either the c-map or by the $c \circ r$ map, as follows. The real projective spaces are the origin, under the $c \circ r$ map, of Alekseevsky spaces of rank 3 , that is, the spaces $\mathcal{T}(p)$, with $p \geqslant 0$ (see $[1,12,7])$. The only symmetric space in the series is $\mathcal{T}(0) \cong S O_{0}(4,3) / S(O(4) \times O(3))$, which comes from $(c \circ r)(S O(1,1))=c\left((S U(1,1) / U(1))^{2}\right)$. The minimal couplings of vector multiplets in $d=4, N=2$ supergravity, the complex hyperbolic spaces $\mathbb{C H}(n)$, originate under the c-map, the infinite series of rank 2 quaternion-Kähler symmetric spaces $S U(n, 2) / S(U(n) \times U(2))$. In this paper, the case $n=3$ is considered. The rank 1 quaternionic hyperbolic space $\mathbb{H} H(n)$ comes by the c-map from pure $d=4$ supergravity, i.e., from the empty special Kähler space.

1.2. Homogeneous quaternionic Kähler structures

Let (M, g) be a connected, simply connected, and complete Riemannian manifold. Ambrose and Singer [3] gave a characterization for (M, g) to be homogeneous in terms of a $(1,2)$ tensor field S, usually called a homogeneous Riemannian structure. Let ∇ be the Levi-Civita connection of g and R its curvature tensor. Then the manifold is homogeneous if and only if the Ambrose-Singer equations $\widetilde{\nabla} g=0, \widetilde{\nabla} R=0, \widetilde{\nabla} S=0$, where $\widetilde{\nabla}=\nabla-S$, are satisfied.

Suppose now that (M, g, v) is a quaternion-Kähler manifold, where v denotes the distinguished rank 3 subbundle of the bundle of $(1,1)$ tensor fields on M. Such a manifold is a homogeneous quaternion-Kähler space if it admits a transitive group of isometries [2]. We have (cf. [3,8]) as a corollary to Kiričenko's theorem [11], that a connected, simply connected, and complete quaternionic Kähler manifold (M, g, v) is homogeneous if and only if there exists a tensor field S of type $(1,2)$ on M satisfying $\widetilde{\nabla} g=0, \widetilde{\nabla} R=0, \widetilde{\nabla} S=0, \widetilde{\nabla} \Omega=0$, where $\widetilde{\nabla}=\nabla-S$ and Ω is the canonical 4-form of (M, g, v). Then S is said to be a homogeneous quaternionic Kähler structure on M. Defining $S_{X Y Z}=g\left(S_{X} Y, Z\right)$, the condition $\widetilde{\nabla} \Omega=0$ can be replaced by the equation

$$
\begin{equation*}
S_{X J_{1} Y J_{1} Z}-S_{X Y Z}=\theta^{3}(X) g\left(J_{2} Y, J_{1} Z\right)-\theta^{2}(X) g\left(J_{3} Y, J_{1} Z\right), \tag{1.1}
\end{equation*}
$$

and the equations obtained by a cyclic permutation of the indices $1,2,3$, for certain differential 1 -forms θ^{a}, $a=1,2,3$, where $\left\{J_{1}, J_{2}, J_{3}\right\}$ is a local basis of v satisfying the conditions $J_{a}^{2}=-I, J_{a} J_{b}=-J_{b} J_{a}=J_{c}$, for each cyclic permutation (a, b, c) of $(1,2,3)$. Let $\left(V,\langle\rangle,, J_{1}, J_{2}, J_{3}\right)$ be a quaternion-Hermitian real vector space, i.e., a $4 n$-dimensional real vector space endowed with an inner product \langle,$\rangle and operators J_{1}, J_{2}, J_{3}$, satisfying $J_{1}^{2}=J_{2}^{2}=J_{3}^{2}=-I, J_{1} J_{2}=-J_{2} J_{1}=J_{3}$ and the two other similar relations, and $\left\langle J_{a} X, J_{a} Y\right\rangle=\langle X, Y\rangle$, $a=1,2,3$. Such a space V is the model for the tangent space at any point of a quaternion-Kähler manifold. Consider the space of tensors $\mathcal{T}(V)=\left\{S \in \otimes^{3} V^{*}: S_{X Y Z}=-S_{X Z Y}\right\}$, and its vector subspace \mathcal{V} of tensors satisfying Eq. (1.1) with $\langle\rangle,, \theta^{a} \in V^{*}$. Then $\mathcal{V}=\check{\mathcal{V}}+\hat{\mathcal{V}}$, where $\check{\mathcal{V}}=\left\{\Theta \in \otimes^{3} V^{*}: \Theta_{X Y Z}=\sum_{a=1}^{3} \theta^{a}(X)\left\langle J_{a} Y, Z\right\rangle, \theta^{a} \in V^{*}\right\}$, and $\hat{\mathcal{V}}=\left\{T \in \otimes^{3} V^{*}: T_{X Y Z}=-T_{X Z Y}, T_{X J_{a} Y J_{a} Z}=T_{X Y Z}, a=1,2,3\right\}$. This decomposition of \mathcal{V} is orthogonal with respect to the scalar product (,) defined by $\left(S, S^{\prime}\right)=\sum_{r, s, t=1}^{4 n} S_{e_{r} e_{s} e_{t}} S_{e_{r} e_{s} e_{t}}^{\prime}$, where $\left\{e_{r}\right\}_{r=1, \ldots, 4 n}$ is an orthonormal basis of V. The spaces $\check{\mathcal{V}}$ and $\hat{\mathcal{V}}$ decompose respectively into two and three subspaces, giving an orthogonal sum of five subspaces which are invariant and irreducible under the action of $S p(n) S p(1)$, as proved by using the next theorem. Let E denote the standard representation of $S p(n)$ on $\mathbb{C}^{2 n} ; S^{3} E$ the 3 -symmetric product of $E ; K$ the irreducible $S p(n)$-module of highest weight $(2,1,0, \ldots, 0) ; H$ the standard representation of $S p(1)$ on \mathbb{C}^{2}; and $S^{3} H$ the fourdimensional symmetric product of H. Denoting real representations with brackets and with the usual notation, we have

Theorem 1 (Fino [8]). The space $[E H] \otimes(\mathfrak{s p}(1) \oplus \mathfrak{s p}(n))$ of homogeneous quaternionic Kähler structures splits into invariant and irreducible subspaces under the action of $\operatorname{Sp}(n) S p(1)$ as $[E H]+\left[E S^{3} H\right]+[E H]+\left[S^{3} E H\right]+[K H]$.

Denoting by $\mathcal{Q} \mathcal{K}_{i}$ the i th summand in Fino's classification, we have

Theorem 2 ([5]). If $n \geqslant 2$, then \mathcal{V} decomposes into the direct sum of the following subspaces invariant and irreducible under the action of $\operatorname{Sp}(n) S p(1)$:

$$
\begin{aligned}
\mathcal{Q} \mathcal{K}_{1}= & \left\{\Theta \in \check{\mathcal{V}}: \Theta_{X Y Z}=\sum_{a=1}^{3} \theta\left(J_{a} X\right)\left\langle J_{a} Y, Z\right\rangle, \theta \in V^{*}\right\}, \\
\mathcal{Q} \mathcal{K}_{2}= & \left\{\theta \in \check{\mathcal{V}}: \Theta_{X Y Z}=\sum_{a=1}^{3} \theta^{a}(X)\left\langle J_{a} Y, Z\right\rangle, \sum_{a=1}^{3} \theta^{a} \circ J_{a}=0, \theta^{a} \in V^{*}\right\}, \\
\mathcal{Q} \mathcal{K}_{3}= & \left\{T \in \hat{\mathcal{V}}: T_{X Y Z}=\langle X, Y\rangle \vartheta(Z)-\langle X, Z\rangle \vartheta(Y)+\sum_{a=1}^{3}\left(\left\langle X, J_{a} Y\right\rangle \vartheta\left(J_{a} Z\right)\right.\right. \\
& \left.\left.-\left\langle X, J_{a} Z\right\rangle \vartheta\left(J_{a} Y\right)\right), \vartheta \in V^{*}\right\}, \\
\mathcal{Q} \mathcal{K}_{4}= & \left\{T \in \hat{\mathcal{V}}: T_{X Y Z}=\frac{1}{2}\left(T_{Y Z X}-T_{Z X Y}+\sum_{a=1}^{3}\left(T_{J_{a} Y J_{a} Z X}-T_{J_{a} Z J_{a} Y X}\right)\right), c_{12}(T)=0\right\}, \\
\mathcal{Q} \mathcal{K}_{5}= & \left\{T \in \hat{\mathcal{V}}: T_{X Y Z}=-\frac{1}{4}\left(T_{Y Z X}-T_{Z Y X}+\sum_{a=1}^{3}\left(T_{J_{a} Y J_{a} Z X}-T_{J_{a} Z J_{a} Y X}\right)\right)\right\} .
\end{aligned}
$$

Denoting the sum of classes $\mathcal{Q} \mathcal{K}_{i}+\mathcal{Q} \mathcal{K}_{j}$ by $\mathcal{Q} \mathcal{K}_{i j}$ and so on, we have $\check{\mathcal{V}}=\mathcal{Q} \mathcal{K}_{12}, \hat{\mathcal{V}}=\mathcal{Q} \mathcal{K}_{345}$.

1.3. Cocompact subgroups acting transitively

Gordon and Wilson gave in [9] a theorem of characterization of the isometry groups acting transitively on noncompact Riemannian symmetric spaces. We proved in [4] Theorem 4 below, which is related to Witte's Theorem 3 and suffices for our purposes. The set-up is as follows. Let (M, g) be a connected noncompact Riemannian manifold and G its full connected isometry group. If K is the isotropy group at any fixed point $o \in M$, then $M=G / K$. We look for the subgroups \hat{G} of G acting transitively by isometries on M. Defining $K_{\hat{G}}=\hat{G} \cap K$, one must have $M \equiv \hat{G} / K_{\hat{G}}$, and thus all the descriptions of (M, g) as a homogeneous Riemannian space. If \hat{G} is a closed subgroup of G which acts transitively on M, then it is cocompact, that is, G / \hat{G} is compact.

The structure of the nondiscrete cocompact subgroups of a connected semisimple Lie group with finite center was given by Witte in [13] (cf. [10]), as follows. Let \mathfrak{g} be the Lie algebra of such a Lie group, \mathfrak{a} a maximal \mathbb{R}-diagonalizable subalgebra of \mathfrak{g}, Σ the set of roots of $(\mathfrak{g}, \mathfrak{a})$, and $\mathfrak{g}=\mathfrak{g}_{0}+\sum_{f \in \Sigma} \mathfrak{g}_{f}$ the restricted-root space decomposition, with $\mathfrak{g}_{0}=\mathfrak{a}+Z_{\mathfrak{k}}(\mathfrak{a})$, where $Z_{\mathfrak{k}}(\mathfrak{a})$ stands for the centralizer of \mathfrak{a} in \mathfrak{k}. Write Σ^{+}for the set of positive roots with respect to a certain notion of positivity for \mathfrak{a}^{*}, and let Π be the set of simple restricted roots. For each subset Ψ of Π, let $[\Psi]$ be the set of restricted roots that are linear combinations of elements of Ψ. Then, the standard parabolic subgroup P_{Ψ}^{0} is defined as the connected subgroup of G having Lie algebra $\mathfrak{p}_{\Psi}=\mathfrak{g}_{0}+\sum_{f \in \Sigma^{+} \cup[\Psi]} \mathfrak{g}_{f}=\mathfrak{l}^{\prime}+\mathfrak{n}_{\Psi}$, where $\mathfrak{l}^{\prime}=\mathfrak{g}_{0}+\sum_{f \in[\Psi]} \mathfrak{g}_{f}=\mathfrak{r}_{\Psi}^{\prime}+\mathfrak{e}_{\Psi}^{\prime}+\mathfrak{a}_{\Psi}$, with $\mathfrak{r}_{\Psi}^{\prime}$ semisimple with noncompact summands, $\mathfrak{e}_{\Psi}^{\prime}$ compact reductive, \mathfrak{a}_{Ψ} the noncompact part of the center of \mathfrak{r}^{\prime}, and $\mathfrak{n}_{\Psi}=\sum_{f \in \Sigma^{+} \backslash[\Psi]} \mathfrak{g}_{f}$ nilpotent. On the Lie group level one has ([13]) the refined Langlands decomposition $P_{\Psi}^{0}=L_{\Psi}^{\prime} E_{\Psi}^{\prime} A_{\Psi} N_{\Psi}$ and

Theorem 3 (Witte [13]). Let L be a connected normal subgroup of L_{Ψ}^{\prime} and E a connected closed subgroup of $E_{\Psi}^{\prime} A_{\Psi}$. Then there is a closed cocompact subgroup \hat{G} of G contained in P_{Ψ} with identity component $\hat{G}^{0}=L E N_{\Psi}$. Moreover, every closed cocompact subgroup of G arises in this way.

Furthermore, we proved in [4].
Theorem 4. Let G be a connected semisimple Lie group with finite center and $G=K A N$ an Iwasawa decomposition. A connected closed cocompact subgroup $\hat{G}=L E N_{\Psi}$ of G acts transitively on $M=G / K$ if and only if: (a) The projections of the Lie algebra $\mathfrak{l} \subset \mathfrak{l}^{\prime}=\mathfrak{g}_{0}+\sum_{f \in[\Psi]} \mathfrak{g}_{f}$ of L to $\sum_{f \in \Sigma^{+} \cap[\Psi]} \mathfrak{g}_{f}$ and to $\mathfrak{a}_{\Psi}^{\perp}$ are surjective, $\mathfrak{a}_{\Psi}^{\perp}$ being
the orthogonal complement to \mathfrak{a}_{Ψ} in $\mathfrak{a} \subset \mathfrak{g}_{0}=\mathfrak{a}_{\Psi}+\mathfrak{a}_{\Psi}^{\perp}+Z_{\mathfrak{k}}(\mathfrak{a})$. (b) The projection of the Lie algebra $\mathfrak{e} \subset \mathfrak{e}^{\prime}{ }_{\Psi}+\mathfrak{a}_{\Psi}$ of E to \mathfrak{a}_{Ψ} is surjective.

1.4. Homogeneous Riemannian structures on symmetric Alekseevsky spaces

The Alekseevsky spaces [1,7] are the nonflat quaternion-Kähler spaces which admit a simply transitive real solvable group of isometries. The noncompact duals of the Wolf spaces are Alekseevsky spaces. Moreover, the Alekseevsky spaces of dimension smaller than 16 are symmetric.

Let M be a connected noncompact quaternion-Kähler symmetric space. Then $M=G / K$, where G is the connected component of the identity of the isometry group of M and K is the isotropy subgroup of G at a point $o \in M$. We consider a Cartan decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ of the Lie algebra \mathfrak{g} of G, and the Iwasawa decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{a}+\mathfrak{n}$, where \mathfrak{k} is the Lie algebra of $K, \mathfrak{a} \subset \mathfrak{p}$ is a maximal \mathbb{R}-diagonalizable subalgebra of \mathfrak{g}, and \mathfrak{n} is a nilpotent subalgebra. Let A and N be the connected abelian and nilpotent Lie subgroups of G whose Lie algebras are \mathfrak{a} and \mathfrak{n}, respectively. The solvable Lie group $A N$ acts simply transitively on M. Suppose now that \hat{G} is a connected closed Lie subgroup of G which acts transitively on M. The isotropy group of this action at $o=K \in M$ is $H=K_{\hat{G}}=\hat{G} \cap K$. Then $M=G / K$ has also the description $M \equiv \hat{G} / H$, and $o \equiv H \in \hat{G} / H$. Consider a reductive decomposition of the Lie algebra $\hat{\mathfrak{g}}$ of \hat{G}, that is, a vector space direct sum $\hat{\mathfrak{g}}=\mathfrak{h}+\mathfrak{m}$, where \mathfrak{h} is the Lie algebra of H and $\operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m}$. Since \hat{G} is connected and M is simply connected then H is connected, and the condition $\operatorname{Ad}(H) \mathfrak{m} \subset \mathfrak{m}$ is equivalent to $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$. We have the isomorphisms of vector spaces

$$
\begin{equation*}
\mathfrak{p} \cong \mathfrak{g} / \mathfrak{k} \cong \hat{\mathfrak{g}} / \mathfrak{h} \cong \mathfrak{m} \cong T_{o}(M) \cong \mathfrak{a}+\mathfrak{n} \tag{1.2}
\end{equation*}
$$

with $\xi: \mathfrak{p} \xlongequal{\cong} \mathfrak{m}, \mu: \mathfrak{m} \xrightarrow{\cong} T_{o}(M)$, and $\zeta: T_{o}(M) \xlongequal{\cong} \mathfrak{a}+\mathfrak{n}$, given by $\xi^{-1}(Z)=Z_{\mathfrak{p}}$ and $\mu(Z)=Z_{o}^{*}$ for $Z \in \mathfrak{m}$, and $\zeta^{-1}(X)=X_{o}^{*}$ for $X \in \mathfrak{a}+\mathfrak{n}$, where, for each $X \in \mathfrak{g}, X^{*}$ denotes the vector field on M generated by the one-parameter subgroup $\{\exp t X\}$ of G acting on M. The scalar product induced in $\mathfrak{a}+\mathfrak{n}$ by the isomorphisms in (1.2) and a positive multiple of $B_{\mid \mathfrak{p} \times \mathfrak{p}}$, where B is the Killing form of \mathfrak{g}, define a left-invariant Riemannian metric on $A N$ such that $A N$ is isometric to M.

The reductive decomposition $\hat{\mathfrak{g}}=\mathfrak{h}+\mathfrak{m}$ defines the homogeneous Riemannian structure $S=\nabla-\widetilde{\nabla}$, where $\widetilde{\nabla}$ is the canonical connection of $M \equiv \hat{G} / H$ with respect to $\hat{\mathfrak{g}}=\mathfrak{h}+\mathfrak{m}$, and it is \hat{G}-invariant and uniquely determined by $\left(\widetilde{\nabla}_{X^{*}} Y^{*}\right)_{o}=-[X, Y]_{o}^{*}$, for $X, Y \in \mathfrak{m}$. Now, if $X \in \mathfrak{g}=\mathfrak{k}+\mathfrak{p}$, we write $X=X_{\mathfrak{k}}+X_{\mathfrak{p}},\left(X_{\mathfrak{k}} \in \mathfrak{k}, X_{\mathfrak{p}} \in \mathfrak{p}\right)$, and if $X, Y \in \mathfrak{m}$, then $\left(X_{\mathfrak{k}}\right)_{o}^{*}=0$ and $\left(\nabla\left(X_{\mathfrak{p}}\right)^{*}\right)_{o}=0$, hence $S_{X_{o}^{*}} Y_{o}^{*}=\left[X_{\mathfrak{k}}, Y_{\mathfrak{p}}\right]_{o}^{*}$. Thus, for each $X, Y \in \mathfrak{a}+\mathfrak{n}$, we have

$$
\begin{equation*}
S_{X_{o}^{*}} Y_{o}^{*}=S_{\xi\left(X_{\mathfrak{p}}\right)_{o}^{*} \xi\left(Y_{\mathfrak{p}}\right)_{o}^{*}=\left[\left(\xi\left(X_{\mathfrak{p}}\right)\right)_{\mathfrak{k}}, Y_{\mathfrak{p}}\right]_{o}^{*}} \tag{1.3}
\end{equation*}
$$

The quaternionic structure on M is defined by a three-dimensional ideal $\mathfrak{u}=\left\langle E_{1}, E_{2}, E_{3}\right\rangle \cong \mathfrak{s p}(1)$ of \mathfrak{k}, where $\left[E_{1}, E_{2}\right]=2 E_{3},\left[E_{2}, E_{3}\right]=2 E_{1},\left[E_{3}, E_{1}\right]=2 E_{2}$. The endomorphisms ad $E_{E_{i}}$ of $\mathfrak{p},(1 \leqslant i \leqslant 3)$, and the isomorphisms in (1.2) define the complex structures $J_{i} \in \operatorname{End}(\mathfrak{a}+\mathfrak{n}),(1 \leqslant i \leqslant 3)$, which make $\left(\mathfrak{a}+\mathfrak{n},\langle\rangle,, J_{1}, J_{2}, J_{3}\right)$ a quaternion-Hermitian vector space.

As Ω is \hat{G}-invariant, we have $\widetilde{\nabla} \Omega=0$, so S is also a homogeneous quaternionic Kähler structure. On the other hand, in [4] we get formula (1.4) below, which furnishes explicitly the coefficients $\theta^{a}, a=1,2,3$, in Eq. (1.1). First, notice that the Lie subgroup of K generated by \mathfrak{u} is a normal subgroup isomorphic to $\operatorname{Sp}(1)$, and there exist an ideal \mathfrak{k}_{1} of \mathfrak{k} such that $\mathfrak{k}=\mathfrak{u} \oplus \mathfrak{k}_{1}$, so that we can get a basis $\mathcal{B}=\left\{E_{1}, E_{2}, E_{3}, \ldots\right\}$ of \mathfrak{k} with the basic elements of \mathfrak{u} and some elements of \mathfrak{k}_{1}. We proved in [4] that the homogeneous Riemannian structure S on $M=G / K$ associated with the reductive decomposition $\hat{\mathfrak{g}}=\mathfrak{h}+\mathfrak{m}$ satisfies Eq. (1.1) with 1 -forms $\theta^{i}, i=1,2,3$, given at $o \equiv H \in \hat{G} / H \equiv M$ by

$$
\begin{equation*}
\theta^{i}\left(X_{o}^{*}\right)=2 \alpha_{i}\left(\left(\xi\left(X_{\mathfrak{p}}\right)\right)_{\mathfrak{k}}\right) \tag{1.4}
\end{equation*}
$$

for each $X \in \mathfrak{a}+\mathfrak{n}$, where $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right\}$ is the dual basis of \mathcal{B}.

2. The three $\mathbf{1 2}$-dimensional Alekseevsky spaces

We want to obtain all the homogeneous descriptions of the Alekseevsky spaces of dimension 12. We rename them as $A_{S O_{0}(4,3)}=S O_{0}(4,3) / S(O(4) \times O(3)), A_{S U(3,2)}=S U(3,2) / S(U(3) \times U(2))$, and $A_{S p(3,1)}=$ $S p(3,1) /(S p(3) \times S p(1))=\mathbb{H} H(3)$. As the center of each of the corresponding full isometry groups is finite,

Theorems 3 and 4 apply. The quaternionic Kähler structure of each one of these spaces is associated with a natural structure of quaternion-Hermitian vector space on the Lie algebra $\mathfrak{a}+\mathfrak{n}$ of the solvable factor $A N$ of an Iwasawa decomposition of its full connected group of isometries. Moreover, to determine each homogeneous Riemannian structure S, we will use (1.3) and the identifications given by (1.2). In particular, for every $X \in \mathfrak{a}+\mathfrak{n}$, we will also denote by X the vector $X_{o}^{*}=\left(X_{\mathfrak{p}}\right)_{o}^{*} \in T_{o}(M)$, and we will give the values $S_{X} Y=S_{X_{o}^{*}} Y_{o}^{*}$, for all X, Y in a suitable basis of $\mathfrak{a}+\mathfrak{n}$. Each such structure S, defined by a reductive decomposition $\hat{\mathfrak{g}}=\mathfrak{h}+\mathfrak{m}$, is a homogeneous quaternionic Kähler structure, and formula (1.4) will allow us to calculate directly the forms θ^{a} in (1.1).

2.1. The hyperbolic Grassmannian $A_{S O_{0}(4,3)}$

The Lie algebra of $S O_{0}(4,3)$ is

$$
\mathfrak{s o (4 , 3)}=\left\{\left(\begin{array}{cc}
A & B \\
B^{\mathrm{T}} & C
\end{array}\right) \in \mathfrak{s l}(7, \mathbb{R}): A \in \mathfrak{s o}(4), C \in \mathfrak{s o}(3)\right\} .
$$

The involution τ of $\mathfrak{s o}(4,3)$ given by $\tau(X)=-X^{\mathrm{T}}$ defines the Cartan decomposition $\mathfrak{s o}(4,3)=\mathfrak{k}+\mathfrak{p}$, where $\mathfrak{k}=\mathfrak{s o}(4) \oplus \mathfrak{s o}(3)$. We consider the subspace \mathfrak{a} of \mathfrak{p} defined by the matrices with real entries s_{1} at the positions (45) and (54) (resp. s_{2} at (36) and (63); s_{3} at (72) and (27)). Then, \mathfrak{a} is a maximal \mathbb{R}-diagonalizable subalgebra of $\mathfrak{s o}(4,3)$, and $Z_{\mathfrak{k}}(\mathfrak{a})=\{0\}$. Let A_{1}, A_{2} and A_{3} be the elements of \mathfrak{a} defined by $\left(s_{1}, s_{2}, s_{3}\right)=(1,0,0),(0,1,0)$ and $(0,0,1)$, respectively, which generate \mathfrak{a}. Let $f_{j} \in \mathfrak{a}^{*}$ such that $f_{j}\left(A_{i}\right)=\delta_{j i}$. Then, the sets of positive roots and simple roots (with respect to a suitable order in \mathfrak{a}^{*}) are $\Sigma^{+}=\left\{f_{1} \pm f_{2}, f_{1} \pm f_{3}, f_{2} \pm f_{3}, f_{1}, f_{2}, f_{3}\right\}$ and $\Pi=\left\{f_{1}-f_{2}, f_{2}-f_{3}, f_{3}\right\}$, respectively. The positive root vector spaces are given by

$$
\begin{align*}
& \mathfrak{g}_{f_{1}+f_{2}}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r & -r & 0 & 0 \\
0 & 0 & -r & 0 & 0 & r & 0 \\
0 & 0 & -r & 0 & 0 & r & 0 \\
0 & 0 & 0 & r & -r & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{f_{1}-f_{2}}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r & -r & 0 & 0 \\
0 & 0 & -r & 0 & 0 & -r & 0 \\
0 & 0 & -r & 0 & 0 & -r & 0 \\
0 & 0 & 0 & -r & r & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right\}, \\
& \mathfrak{g}_{f_{1}+f_{3}}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r & -r & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -r & 0 & 0 & 0 & 0 & r \\
0 & -r & 0 & 0 & 0 & 0 & r \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r & -r & 0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{f_{1}-f_{3}}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r & -r & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -r & 0 & 0 & 0 & 0 & -r \\
0 & -r & 0 & 0 & 0 & 0 & -r \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -r & r & 0 & 0
\end{array}\right)\right\}, \\
& \mathfrak{g}_{f_{2}+f_{3}}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & r & 0 & 0 & -r & 0 \\
0 & -r & 0 & 0 & 0 & 0 & r \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -r & 0 & 0 & 0 & 0 & r \\
0 & 0 & r & 0 & 0 & -r & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{f_{2}-f_{3}}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & r & 0 & 0 & -r & 0 \\
0 & -r & 0 & 0 & 0 & 0 & -r \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -r & 0 & 0 & 0 & 0 & -r \\
0 & 0 & -r & 0 & 0 & r & 0
\end{array}\right)\right\}, \tag{2.1}\\
& \mathfrak{g}_{f_{1}}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & 0 & u & -u & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-u & 0 & 0 & 0 & 0 & 0 & 0 \\
-u & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{f_{2}}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & u & 0 & 0 & -u & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-u & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-u & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right\},
\end{align*}
$$

$$
\mathfrak{g}_{f_{3}}=\left\{\left(\begin{array}{ccccccc}
0 & u & 0 & 0 & 0 & 0 & -u \tag{2.2}\\
-u & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-u & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right\}
$$

where $r, u \in \mathbb{R}$. The root vector spaces for the respective opposite roots are the corresponding sets of opposite transpose matrices. For each $f=f_{1} \pm f_{2}, f_{1} \pm f_{3}, f_{2} \pm f_{3}$, let X_{f} be the generator of \mathfrak{g}_{f} in (2.1) obtained by putting $r=1$ for each nonnull entry. For $f=f_{1}, f_{2}, f_{3}$, let U_{f} be the generator of \mathfrak{g}_{f} in (2.2) obtained by putting $u=1$ in each nonzero entry. Let also X_{f} and U_{f} be the corresponding elements of \mathfrak{g}_{f} for the respective opposite roots $f \in \Sigma \backslash \Sigma^{+}$. The restricted-root space decomposition is $\mathfrak{s o}(4,3)=\mathfrak{a}+\sum_{f \in \Sigma} \mathfrak{g}_{f}$. Now, we put $X_{1}=X_{f_{1}+f_{2}}$, $Y_{1}=X_{-f_{1}-f_{2}}, X_{2}=X_{f_{1}-f_{2}}, Y_{2}=X_{-f_{1}+f_{2}}, X_{3}=X_{f_{1}+f_{3}}, Y_{3}=X_{-f_{1}-f_{3}}, X_{4}=X_{f_{1}-f_{3}}, Y_{4}=X_{-f_{1}+f_{3}}$, $X_{5}=X_{f_{2}+f_{3}}, Y_{5}=X_{-f_{2}-f_{3}}, X_{6}=X_{f_{2}-f_{3}}, Y_{6}=X_{-f_{2}+f_{3}}, U_{j}=U_{f_{j}}, V_{j}=U_{-f_{j}},(1 \leqslant j \leqslant 3)$. We have the Iwasawa decomposition $\mathfrak{s o}(4,3)=\mathfrak{k}+\mathfrak{a}+\mathfrak{n}$, where $\mathfrak{n}=\sum_{f \in \Sigma^{+}} \mathfrak{g}_{f}=\left\langle X_{i}, U_{j}: 1 \leqslant i \leqslant 6 ; 1 \leqslant j \leqslant 3\right\rangle$.

The elements E_{1}, E_{2}, E_{3} of $\mathfrak{k}=\mathfrak{s o}(4) \oplus \mathfrak{s o}(3)$ given by

$$
\left(\begin{array}{ccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{ccccccc}
0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

respectively, satisfy $\left[E_{1}, E_{2}\right]=2 E_{3},\left[E_{2}, E_{3}\right]=2 E_{1},\left[E_{3}, E_{1}\right]=2 E_{2}$, and generate a compact ideal $\mathfrak{u} \cong \mathfrak{s p}(1)$ of \mathfrak{k}. The isotropy representation $\mathfrak{u} \rightarrow \mathfrak{g l}(\mathfrak{p})$ defines a quaternionic Kähler structure on $A_{S O_{0}(4,3)}$. The action of each E_{i} on \mathfrak{p} and the isomorphisms $\mathfrak{p} \cong \mathfrak{s o}(4,3) / \mathfrak{k} \cong \mathfrak{a}+\mathfrak{n}$ define the complex structures $J_{i}(i=1,2,3)$ acting on $\mathfrak{a}+\mathfrak{n}$. The action of each J_{i} on the elements of the basis of $\mathfrak{a}+\mathfrak{n}$ is given by

	A_{1}	A_{2}	A_{3}	U_{1}	U_{2}	U_{2}
J_{1}	$-\frac{1}{2}\left(X_{1}+X_{2}\right)$	$-\frac{1}{2}\left(X_{1}-X_{2}\right)$	$-U_{3}$	$-\frac{1}{2}\left(X_{3}+X_{4}\right)$	$-\frac{1}{2}\left(X_{5}+X_{6}\right)$	A_{3}
J_{2}	$-\frac{1}{2}\left(X_{3}+X_{4}\right)$	U_{2}	$-\frac{1}{2}\left(X_{3}-X_{4}\right)$	$\frac{1}{2}\left(X_{1}+X_{2}\right)$	$-A_{2}$	$-\frac{1}{2}\left(X_{5}-X_{6}\right)$
J_{3}	$-U_{1}$	$-\frac{1}{2}\left(X_{5}+X_{6}\right)$	$-\frac{1}{2}\left(X_{5}-X_{6}\right)$	A_{1}	$\frac{1}{2}\left(X_{1}-X_{2}\right)$	$\frac{1}{2}\left(X_{3}-X_{4}\right)$
	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
J_{1}	$A_{1}+A_{2}$	$A_{1}-A_{2}$	$\frac{1}{2}\left(X_{5}-X_{6}\right)+U_{1}$	$-\frac{1}{2}\left(X_{5}-X_{6}\right)+U_{1}$	$-\frac{1}{2}\left(X_{3}-X_{4}\right)+U_{2}$	$\frac{1}{2}\left(X_{3}-X_{4}\right)+U_{2}$
J_{2}	$-\frac{1}{2}\left(X_{5}+X_{6}\right)-U_{1}$	$\frac{1}{2}\left(X_{5}+X_{6}\right)-U_{1}$	$A_{1}+A_{3}$	$A_{1}-A_{3}$	$\frac{1}{2}\left(X_{1}-X_{2}\right)+U_{3}$	$\frac{1}{2}\left(X_{1}-X_{2}\right)-U_{3}$
J_{3}	$\frac{1}{2}\left(X_{3}+X_{4}\right)-U_{2}$	$\frac{1}{2}\left(X_{3}+X_{4}\right)+U_{2}$	$-\frac{1}{2}\left(X_{1}+X_{2}\right)-U_{3}$	$-\frac{1}{2}\left(X_{1}+X_{2}\right)+U_{3}$	$A_{2}+A_{3}$	$A_{2}-A_{3}$

We consider the scalar product \langle,$\rangle induced in \mathfrak{a}+\mathfrak{n}$ through the isomorphism $\mathfrak{p} \cong \mathfrak{a}+\mathfrak{n}$ and $\frac{1}{10} B_{\mid \mathfrak{p} \times \mathfrak{p}}$. This product makes the basis orthogonal, with $\left\langle A_{j}, A_{j}\right\rangle=\left\langle U_{j}, U_{j}\right\rangle=1,\left\langle X_{j}, X_{j}\right\rangle=2$, and $\left(\mathfrak{a}+\mathfrak{n},\langle\rangle,, J_{1}, J_{2}, J_{3}\right)$ is a quaternion-Hermitian vector space.

2.1.1. Homogeneous descriptions of $A_{S O_{0}(4,3)}$ and homogeneous quaternionic Kähler structures

The different descriptions of $A_{S O_{0}(4,3)}$ as a homogeneous Riemannian space will follow from the refined Langlands decompositions of the parabolic subalgebras \mathfrak{p}_{Ψ} of $\mathfrak{s o}(4,3)$, by using Theorem 4. The standard parabolic subalgebras of $\mathfrak{s o}(4,3)$ are parametrized by the family of all the subsets of $\Pi: \Pi, \emptyset, \Psi_{1}=\left\{f_{1}-f_{2}, f_{2}-f_{3}\right\}, \Psi_{2}=\left\{f_{1}-f_{2}, f_{3}\right\}$, $\Psi_{3}=\left\{f_{2}-f_{3}, f_{3}\right\}, \Psi_{4}=\left\{f_{1}-f_{2}\right\}, \Psi_{5}=\left\{f_{2}-f_{3}\right\}, \Psi_{6}=\left\{f_{3}\right\}$.

For each one of the eight cases there will exist only one possible choice of the normal subgroup L of the semisimple Lie group L_{Ψ}^{\prime} and of the subgroup E of $E_{\Psi}^{\prime} A_{\Psi}$, so that $\hat{G}=L E N_{\Psi}$ be a connected cocompact subgroup of

Table 1

A_{1}	A_{2}	A_{3}	U_{1}	U_{2}	U_{3}	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
$S_{A_{1}}$	0	0	0	0	0	0	0	0	0	0	0
$S_{A_{2}}$	0	0	0	0	0	0	0	0	0	0	0
$S_{A_{3}}$	0	0	0	0	0	0	0	0	0	0	0
$S_{U_{1}}$	$-U_{1}$	0	0	A_{1}	$\frac{1}{2}\left(X_{1}-X_{2}\right)$	$\frac{1}{2}\left(X_{3}-X_{4}\right)$	$-U_{2}$	U_{2}	$-U_{3}$	U_{3}	0
$S_{U_{2}}$	0	$-U_{2}$	0	$-\frac{1}{2}\left(X_{1}+X_{2}\right)$	A_{2}	$\frac{1}{2}\left(X_{5}-X_{6}\right)$	U_{1}	U_{1}	0	0	$-U_{3}$
$S_{U_{3}}$	0	0	$-U_{3}$	$-\frac{1}{2}\left(X_{3}+X_{4}\right)$	$-\frac{1}{2}\left(X_{5}+X_{6}\right)$	A_{3}	0	0	U_{3}		
$S_{X_{1}}$	$-X_{1}$	$-X_{1}$	0	$-U_{2}$	U_{1}	0	$2 A_{1}$	0	U_{1}	U_{2}	U_{2}
$S_{X_{2}}-X_{2}$	X_{2}	0	U_{2}	$-U_{1}$	0	$+2 A_{2}$	0	$-X_{6}$	$-X_{5}$	X_{4}	X_{3}
$S_{X_{3}}-X_{3}$	0	$-X_{3}$	$-U_{3}$	0	0	$2 A_{1}$	X_{5}	X_{6}	$-X_{3}$	$-X_{4}$	
$S_{X_{4}}-X_{4}$	0	X_{4}	U_{3}	0	U_{1}	$-X_{6}$	X_{5}	$2 A_{1}$	0	$-X_{2}$	X_{1}
$S_{X_{5}}$	0	$-X_{5}$	$-X_{5}$	0	$-A_{3}$	$2 A_{1}$	X_{1}	$-X_{2}$			
$S_{X_{6}}$	0	$-X_{6}$	X_{6}	0	$-U_{3}$	U_{2}	$-X_{5}$	X_{6}	0	$-2 A_{3}$	$2 A_{2}$

$S O_{0}(4,3)$ which acts transitively on $A_{S O_{0}(4,3)}$. It must be $L=L_{\Psi}^{\prime}$ and $E=A_{\Psi}$, and hence \hat{G} coincides with the corresponding parabolic subgroup P_{Ψ}. On the other hand, the homogeneous Riemannian structures associated with the reductive decompositions obtained in a natural way from the parabolic subalgebras \mathfrak{p}_{Ψ} are homogeneous quaternionic Kähler structures. We will use (1.3) to determine these structures.
The case $\Psi=\Pi$. We have $[\Psi]=\Sigma, \mathfrak{e}_{\Pi}^{\prime}=\mathfrak{a}_{\Pi}=\mathfrak{n}_{\Pi}=\{0\}$, and $\mathfrak{p}_{\Pi}=\mathfrak{s o}(4,3)+\{0\}+\{0\}+\{0\}$. The present case gives the description as a symmetric space $A_{S O_{0}(4,3)} \equiv S O_{0}(4,3) /(S O(4) \times S O(3))$. The associated reductive decomposition is the Cartan decomposition $\mathfrak{s o}(4,3)=\mathfrak{k}+\mathfrak{p}$, with $\mathfrak{k} \cong \mathfrak{s o}(4) \oplus \mathfrak{s o}(3)$, and the corresponding homogeneous quaternionic Kähler structure is $S=0$.
The case $\Psi=\emptyset$. The refined Langlands decomposition of the minimal parabolic subalgebra is $\mathfrak{p} \emptyset=\{0\}+\{0\}+\mathfrak{a}+\mathfrak{n}$. This provides the description of $A_{S O_{0}(4,3)}$ as the solvable Lie group $\hat{G}=A N$, where N is the nilpotent factor in the Iwasawa decomposition of $S O_{0}(4,3)$. The associated reductive decomposition is $\mathfrak{a}+\mathfrak{n}=\{0\}+(\mathfrak{a}+\mathfrak{n})$, and the corresponding homogeneous quaternionic Kähler structure S is given by Table 1 .

Eq. (1.1) are satisfied, with the following nonzero values of θ^{i} at $o: \theta^{1}\left(U_{3}\right)=\theta^{1}\left(X_{1}\right)=\theta^{1}\left(X_{2}\right)=-\theta^{2}\left(U_{2}\right)=$ $\theta^{2}\left(X_{3}\right)=\theta^{2}\left(X_{4}\right)=\theta^{3}\left(U_{1}\right)=\theta^{3}\left(X_{5}\right)=\theta^{3}\left(X_{6}\right)=1$.
The case $\Psi=\Psi_{1}$. Then $\left[\Psi_{1}\right]=\left\{ \pm\left(f_{1}-f_{2}\right), \pm\left(f_{2}-f_{3}\right), \pm\left(f_{1}-f_{3}\right)\right\}$, and $\mathfrak{p}_{\Psi_{1}}=\mathfrak{r}_{\Psi_{1}}^{\prime}+\{0\}+\mathfrak{a}_{\Psi_{1}}+\mathfrak{n}_{\Psi_{1}}$, where $\mathfrak{a}_{\Psi_{1}}=\left\langle A_{1}+A_{2}+A_{3}\right\rangle, \mathfrak{n}_{\Psi_{1}}=\left\langle X_{1}, X_{3}, X_{5}, U_{1}, U_{2}, U_{3}\right\rangle$, and $\mathfrak{r}_{\Psi_{1}}^{\prime}=\mathfrak{a}_{\Psi_{1}}^{\perp}+\left\langle X_{2}, Y_{2}, X_{4}, Y_{4}, X_{6}, Y_{6}\right\rangle$, $\mathfrak{a}_{\Psi_{1}}^{\perp}=\left\langle A_{1}-A_{2}, A_{2}-A_{3}\right\rangle$, that is

$$
\mathfrak{r}_{\Psi_{1}}^{\prime}=\left\{\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & x_{1} & x_{2} & y_{2} & y_{1} & s_{3} \\
0 & -x_{1} & 0 & x_{3} & y_{3} & s_{2} & y_{1} \\
0 & -x_{2} & -x_{3} & 0 & s_{1} & y_{3} & y_{2} \\
0 & y_{2} & y_{3} & s_{1} & 0 & -x_{3} & -x_{2} \\
0 & y_{1} & s_{2} & y_{3} & x_{3} & 0 & -x_{1} \\
0 & s_{3} & y_{1} & y_{2} & x_{2} & x_{1} & 0
\end{array}\right): \begin{array}{c}
\\
x_{j}, y_{j}, s_{j} \in \mathbb{R} \\
(1 \leqslant j \leqslant 3), \\
s_{1}+s_{2}+s_{3}=0 \\
\end{array}\right\} \cong \mathfrak{s l}(3, \mathbb{R}) .
$$

We have $\hat{G}=P_{\Psi_{1}} \cong \operatorname{Sl}(3, \mathbb{R}) \mathbb{R} N_{\Psi_{1}}$, and the isotropy algebra is $\mathfrak{h}=\hat{\mathfrak{g}} \cap \mathfrak{k}=\mathfrak{r}_{\Psi_{1}}^{\prime} \cap$ (so(4) \oplus $\mathfrak{s o}(3))=\left\langle\left(X_{2}\right)_{\mathfrak{k}},\left(X_{4}\right)_{\mathfrak{k}},\left(X_{6}\right)_{\mathfrak{k}}\right\rangle \cong \mathfrak{s o}(3)$. We have the reductive decomposition $\mathfrak{p}_{\Psi_{1}}=\mathfrak{h}+\mathfrak{m}$, where $\mathfrak{m}=$ $\left\langle A_{1}, A_{2}, A_{3}, U_{1}, U_{2}, U_{3}, X_{1},\left(X_{2}\right)_{\mathfrak{p}}, X_{3},\left(X_{4}\right)_{\mathfrak{p}}, X_{5},\left(X_{6}\right)_{\mathfrak{p}}\right\rangle$, which is associated with the homogeneous description
$A_{S O_{0}(4,3)} \equiv S l(3, \mathbb{R}) \mathbb{R} N_{\Psi_{1}} / S O(3)$. The corresponding structure S is given at o by Table 1, except that $S_{X_{2}}(\cdot)=$ $S_{X_{4}}(\cdot)=S_{X_{6}}(\cdot)=0$. Eq. (1.1) are satisfied with the following nonzero values of θ^{i} at $o: \theta^{1}\left(U_{3}\right)=\theta^{1}\left(X_{1}\right)=$ $-\theta^{2}\left(U_{2}\right)=\theta^{2}\left(X_{3}\right)=\theta^{3}\left(U_{1}\right)=\theta^{3}\left(X_{5}\right)=1$.
The case $\Psi=\Psi_{2}$. Then $\left[\Psi_{2}\right]=\left\{ \pm\left(f_{1}-f_{2}\right), \pm f_{3}\right\}, \mathfrak{p}_{\Psi_{2}}=\mathfrak{r}_{\Psi_{2}}^{\prime}+\{0\}+\mathfrak{a}_{\Psi_{2}}+\mathfrak{n}_{\Psi_{2}}$, where $\mathfrak{a}_{\Psi_{2}}=\left\langle A_{1}+A_{2}\right\rangle$, $\mathfrak{n}_{\Psi_{2}}=\left\langle X_{1}, X_{3}, X_{4}, X_{5}, X_{6}, U_{1}, U_{2}\right\rangle$, and $\mathfrak{l}_{\Psi_{2}}^{\prime}=\mathfrak{a}_{\Psi_{2}}^{\perp}+\left\langle X_{2}, Y_{2}, U_{3}, V_{3}\right\rangle, a_{\Psi_{2}}^{\perp}=\left\langle A_{1}-A_{2}, A_{3}\right\rangle$, that is

$$
\mathfrak{r}_{\Psi_{2}}^{\prime}=\left\{\left(\begin{array}{ccccccc}
0 & u & 0 & 0 & 0 & 0 & v \\
-u & 0 & 0 & 0 & 0 & 0 & t \\
0 & 0 & 0 & x & y & -s & 0 \\
0 & 0 & -x & 0 & s & y & 0 \\
0 & 0 & y & s & 0 & -x & 0 \\
0 & 0 & -s & y & x & 0 & 0 \\
v & t & 0 & 0 & 0 & 0 & 0
\end{array}\right): s, t, x, y, v \in \mathbb{R}\right\} \cong \mathfrak{s l}(2, \mathbb{R}) \oplus \mathfrak{s l}(2, \mathbb{R})
$$

Since $\hat{G}=P_{\Psi_{2}} \cong(S l(2, \mathbb{R}) \times S l(2, \mathbb{R})) \mathbb{R} N_{\Psi_{2}}$ and $\mathfrak{h}=\mathfrak{r}_{\Psi_{2}}^{\prime} \cap \mathfrak{k}=\left\langle\left(U_{3}\right)_{\mathfrak{k}},\left(X_{2}\right)_{\mathfrak{k}} \cong \mathfrak{s o}(2) \oplus \mathfrak{s o}(2)\right.$, we have $A_{S O_{0}(4,3)} \equiv(S l(2, \mathbb{R}) \times S l(2, \mathbb{R})) \mathbb{R} N_{\Psi_{2}} /(S O(2) \times S O(2))$, whose natural associated reductive decomposition is $\mathfrak{p}_{\Psi_{2}}=\mathfrak{h}+\mathfrak{m}$, where $\mathfrak{m}=\left\langle A_{1}, A_{2}, A_{3}, U_{1}, U_{2},\left(U_{3}\right)_{\mathfrak{p}}, X_{1},\left(X_{2}\right)_{\mathfrak{p}}, X_{3}, X_{4}, X_{5}, X_{6}\right\rangle$. Its structure S is given at o by Table 1, except that $S_{U_{3}}(\cdot)=S_{X_{2}}(\cdot)=0$. Eq. (1.1) are satisfied with the following nonzero values of θ^{i} at o : $\theta^{1}\left(X_{1}\right)=-\theta^{2}\left(U_{2}\right)=\theta^{2}\left(X_{3}\right)=\theta^{2}\left(X_{4}\right)=\theta^{3}\left(U_{1}\right)=\theta^{3}\left(X_{5}\right)=\theta^{3}\left(X_{6}\right)=1$.
The case $\Psi=\Psi_{3}$. Then $\left[\Psi_{3}\right]=\left\{ \pm f_{2} \pm f_{3}, \pm f_{2}, \pm f_{3}\right\}$ and $\mathfrak{p}_{\Psi_{3}}=\mathfrak{l}_{\Psi_{3}}^{\prime}+\{0\}+\mathfrak{a}_{\Psi_{3}}+\mathfrak{n}_{\Psi_{3}}$, where $\mathfrak{a}_{\Psi_{3}}=\left\langle A_{1}\right\rangle$, $\mathfrak{n}_{\Psi_{3}}=\left\langle X_{1}, X_{2}, X_{3}, X_{4}, U_{1}\right\rangle$, and $\mathfrak{r}_{\Psi_{3}}^{\prime}=\mathfrak{a}_{\Psi_{3}}^{\perp}+\left\langle X_{5}, Y_{5}, X_{6}, Y_{6}, U_{2}, V_{2}, U_{3}, V_{3}\right\rangle, \mathfrak{a}_{\Psi_{3}}^{\perp}=\left\langle A_{2}, A_{3}\right\rangle$, that is

$$
\mathfrak{r}_{\Psi_{3}}^{\prime}=\left\{\left(\begin{array}{ccccccc}
0 & u_{1} & u_{2} & 0 & 0 & v_{2} & v_{1} \\
-u_{1} & 0 & x_{1} & 0 & 0 & y_{1} & t \\
-u_{2} & -x_{1} & 0 & 0 & 0 & s & y_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
v_{2} & y_{1} & s & 0 & 0 & 0 & x_{2} \\
v_{1} & t & y_{2} & 0 & 0 & -x_{2} & 0
\end{array}\right): \begin{array}{c}
\\
x_{j}, y_{j}, u_{j}, v_{j} \\
s, t \in \mathbb{R} \\
(1 \leqslant j \leqslant 3)
\end{array}\right\} \cong \mathfrak{s o (3 , 2)}
$$

We have $\hat{G}=P_{\Psi_{3}} \cong S O_{0}(3,2) \mathbb{R} N_{\Psi_{3}}$, and $\mathfrak{h}=\mathfrak{r}_{\Psi_{3}}^{\prime} \cap \mathfrak{k}=\left\langle\left(U_{2}\right)_{\mathfrak{k}},\left(U_{3}\right)_{\mathfrak{k}},\left(X_{5}\right)_{\mathfrak{k}},\left(X_{6}\right)_{\mathfrak{k}}\right\rangle \cong$ $\mathfrak{s o (3)} \oplus \mathfrak{s o (2)}$, then $A_{S O_{0}(4,3)} \equiv S O_{0}(3,2) \mathbb{R} N_{\Psi_{3}} /(S O(3) \times S O(2))$, and $\mathfrak{p}_{\Psi_{3}}=\mathfrak{h}+\mathfrak{m}$, where $\mathfrak{m}=$ $\left\langle A_{1}, A_{2}, A_{3}, U_{1},\left(U_{2}\right)_{\mathfrak{p}},\left(U_{3}\right)_{\mathfrak{p}}, X_{1}, X_{2}, X_{3}, X_{4},\left(X_{5}\right)_{\mathfrak{p}},\left(X_{6}\right)_{\mathfrak{p}}\right\rangle$. The corresponding structure S is given at o by Table 1, except that $S_{U_{2}}(\cdot)=S_{U_{3}}(\cdot)=S_{X_{5}}(\cdot)=S_{X_{6}}(\cdot)=0$. Eq. (1.1) are satisfied with the following nonzero values of θ^{i} at $o: \theta^{1}\left(X_{1}\right)=\theta^{1}\left(X_{2}\right)=\theta^{2}\left(X_{3}\right)=\theta^{2}\left(X_{4}\right)=\theta^{3}\left(U_{1}\right)=1$.
The case $\Psi=\Psi_{4}$. Then $\left[\Psi_{4}\right]=\left\{ \pm\left(f_{1}-f_{2}\right)\right\}$ and $\mathfrak{p}_{\Psi_{4}}=\mathfrak{r}_{\Psi_{4}}^{\prime}+\{0\}+\mathfrak{a}_{\Psi_{4}}+\mathfrak{n}_{\Psi_{4}}$, where $\mathfrak{a}_{\Psi_{4}}=\left\langle A_{1}+A_{2}, A_{3}\right\rangle$, $\mathfrak{n}_{\Psi_{4}}=\left\langle X_{1}, X_{3}, X_{4}, X_{5}, X_{6}, U_{1}, U_{2}, U_{3}\right\rangle$, and $\mathfrak{r}_{\Psi_{4}}^{\prime}=\mathfrak{a}_{\Psi_{4}}^{\perp}+\left\langle X_{2}, Y_{2}\right\rangle, \mathfrak{a}_{\Psi_{4}}^{\perp}=\left\langle A_{1}-A_{2}\right\rangle$, that is $\mathfrak{l}_{\Psi_{4}}^{\prime} \cong \mathfrak{s l}(2, \mathbb{R})$. This gives $A_{S O_{0}(4,3)} \equiv \operatorname{Sl}(2, \mathbb{R}) \mathbb{R}^{2} N_{\Psi_{4}} / S O(2)$, with the reductive decomposition $\mathfrak{p}_{\Psi_{4}}=\mathfrak{h}+\mathfrak{m}$, where $\mathfrak{h}=\left\langle\left(X_{2}\right)_{\mathfrak{k}}\right\rangle \cong$ $\mathfrak{s o}(2)$, and $\mathfrak{m}=\left\langle A_{1}, A_{2}, A_{3}, U_{1}, U_{2}, U_{3}, X_{1},\left(X_{2}\right)_{\mathfrak{p}}, X_{3}, X_{4}, X_{5}, X_{6}\right\rangle$. The corresponding structure S is given at o by Table 1, except that $S_{X_{2}}(\cdot)=0$. Eq. (1.1) are satisfied with θ^{i} at o as in $\Psi=\emptyset$, except that $\theta^{1}\left(X_{2}\right)=0$.
The case $\Psi=\Psi_{5}$. Then $\left[\Psi_{5}\right]=\left\{ \pm\left(f_{2}-f_{3}\right)\right\}$ and $\mathfrak{p}_{\Psi_{5}}=\mathfrak{l}^{\prime} \Psi_{5}+\{0\}+\mathfrak{a}_{\Psi_{5}}+\mathfrak{n}_{\Psi_{5}}$, where $\mathfrak{a}_{\Psi_{5}}=\left\langle A_{1}, A_{2}+A_{3}\right\rangle$, $\mathfrak{n}_{\Psi_{5}}=\left\langle X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, U_{1}, U_{2}, U_{3}\right\rangle$, and $\mathfrak{r}_{\Psi_{5}}^{\prime}=\mathfrak{a}_{\Psi_{5}}^{\perp}+\left\langle X_{6}, Y_{6}\right\rangle, \mathfrak{a}_{\Psi_{5}}^{\perp}=\left\langle A_{2}-A_{3}\right\rangle$, that is $\mathfrak{r}_{\Psi_{5}}^{\prime} \cong \mathfrak{s l}(2, \mathbb{R})$. This gives $A_{S O_{0}(4,3)} \equiv S l(2, \mathbb{R}) \mathbb{R}^{2} N_{\Psi_{5}} / S O(2)$, with $\mathfrak{p} \Psi_{5}=\mathfrak{h}+\mathfrak{m}$, where $\mathfrak{h}=\left\langle\left(X_{6}\right) \mathfrak{k}\right\rangle \cong \mathfrak{s o}(2)$, and $\mathfrak{m}=$ $\left\langle A_{1}, A_{2}, A_{3}, U_{1}, U_{2}, U_{3}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5},\left(X_{6}\right)_{\mathfrak{p}}\right\rangle$. The corresponding structure S is given at o by Table 1, except that $S_{X_{6}}(\cdot)=0$. Eq. (1.1) are satisfied with θ^{i} at o as in $\Psi=\emptyset$, except that $\theta^{3}\left(X_{6}\right)=0$.
The case $\Psi=\Psi_{6}$. Then $\left[\Psi_{6}\right]=\left\{ \pm f_{3}\right\}$ and $\mathfrak{p}_{\Psi_{6}}=\mathfrak{r}_{\Psi_{6}}^{\prime}+\{0\}+\mathfrak{a}_{\Psi_{6}}+\mathfrak{n}_{\Psi_{6}}$, where $\mathfrak{a}_{\Psi_{6}}=\left\langle A_{1}, A_{2}\right\rangle, \mathfrak{n}_{\Psi_{6}}=$ $\left\langle X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, U_{1}, U_{2}\right\rangle$, and $\mathfrak{r}_{\Psi_{6}}^{\prime}=\mathfrak{a}_{\Psi_{6}}^{\perp}+\left\langle U_{3}, V_{3}\right\rangle, \mathfrak{a}_{\Psi_{6}}^{\perp}=\left\langle A_{3}\right\rangle$, that is $\mathfrak{r}_{\Psi_{6}}^{\prime} \cong \mathfrak{s o}(2,1) \cong \mathfrak{s l}(2, \mathbb{R})$. This gives $A_{S O_{0}(4,3)} \equiv S l(2, \mathbb{R}) \mathbb{R}^{2} N_{\Psi_{6}} / S O(2)$, and $\mathfrak{p}_{\Psi_{6}}=\mathfrak{h}+\mathfrak{m}$, where $\mathfrak{h}=\left\langle\left(U_{3}\right)_{\mathfrak{k}}\right\rangle \cong \mathfrak{s o}(2), \mathfrak{m}=$ $\left\langle A_{1}, A_{2}, A_{3}, U_{1}, U_{2},\left(U_{3}\right)_{\mathfrak{p}}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}\right\rangle$. The corresponding structure S is given at o by Table 1, except that $S_{U_{3}}(\cdot)=0$. Eq. (1.1) are satisfied with θ^{i} at o as in $\Psi=\emptyset$, except that $\theta^{1}\left(U_{3}\right)=0$.

Table 2

	ϑ	$F\left(T-T^{\vartheta}\right)_{X Y Z}$	$\left(T-T^{\vartheta}\right)_{X Y Z}$	$X Y Z$
\emptyset	$\frac{1}{28}\left(7 A_{1}+4 A_{2}+A_{3}, \cdot\right\rangle$	$-\frac{16}{7}$	$\frac{5}{14}$	U_{1}
Ψ_{1}	$\frac{1}{7}\left\langle A_{1}+A_{2}+A_{3}, \cdot\right\rangle$	$-\frac{25}{7}$	$\frac{5}{14}$	$\frac{17}{56}$
Ψ_{2}	$\frac{11}{56}\left\langle A_{1}+A_{2}, \cdot\right\rangle$	$-\frac{5}{4}$	$X_{1} U_{2} U_{2}$	
Ψ_{3}	$\frac{1}{4}\left(A_{1}, \cdot\right\rangle$	$-11 A_{2}$		
Ψ_{4}	$\frac{1}{56}\left(11 A_{1}+2 A_{3}, \cdot\right\rangle$	$\frac{173}{56}$	$U_{2} X_{2} X_{1}$	
Ψ_{5}	$\frac{1}{56}\left\langle 14 A_{1}+5 A_{2}+5 A_{3}, \cdot\right\rangle$	$-\frac{3}{7}$	$X_{3} X_{1} X_{6}$	
Ψ_{6}	$\frac{1}{28}\left(7 A_{1}+4 A_{2}, \cdot\right\rangle$	$-\frac{12}{7}$	$\frac{71}{56}$	$X_{3} X_{1} X_{6}$

Now, we know that such a structure S decomposes as $S=\Theta+T$, with $\Theta \in \mathcal{Q} \mathcal{K}_{12}$, i.e., such that $\Theta_{X} Y=$ $\frac{1}{2} \sum_{a=1}^{3} \theta^{a}(X) J_{a} Y$, and $T \in \mathcal{Q} \mathcal{K}_{345}$. The condition for the tensor Θ to be in $\mathcal{Q} \mathcal{K}_{1}$ is $\theta^{a}=\theta \circ J_{a}, a=1,2,3$, for some 1 -form θ. Then, as some calculations show, we have in all the cases that $\theta \in \mathcal{Q} \mathcal{K}_{12} \backslash \mathcal{Q} \mathcal{K}_{1} \cup \mathcal{Q} \mathcal{K}_{2}$, except for Ψ_{3}, where $\Theta \in \mathcal{Q} \mathcal{K}_{1}$ with corresponding 1-form $\theta=\left\langle A_{1}, \cdot\right\rangle$. Further, since $\operatorname{dim} M=12$, the 1 -form defining the $\mathcal{Q K}_{3}$-component of T (see Theorem 2) is given by $\vartheta=\frac{1}{14} c_{12}$. The respective values of ϑ are given by Table 2, so the $\mathcal{Q K}_{3}$-component of T never vanishes in these cases.

Let $F: \hat{\mathcal{V}} \rightarrow \hat{\mathcal{V}}$ be the operator defined by $F(T)_{X Y Z}=T_{Z X Y}+T_{Y Z X}+\sum_{a=1}^{3}\left(T_{J_{a} Z X J_{a} Y}+T_{J_{a} Y J_{a} Z X}\right)$, having eigenvalues 2 and -4 , and respective eigenspaces $\mathcal{Q} \mathcal{K}_{34}$ and $\mathcal{Q} \mathcal{K}_{5}$ (see Theorem 2). Consider $T^{\vartheta} \in \mathcal{Q} \mathcal{K}_{3}$ given by $T_{X Y Z}^{\vartheta}=\langle X, Y\rangle \vartheta(Z)-\langle X, Z\rangle \vartheta(Y)+\sum_{a=1}^{3}\left(\left\langle X, J_{a} Y\right\rangle \vartheta\left(J_{a} Z\right)-\left\langle X, J_{a} Z\right\rangle \vartheta\left(J_{a} Y\right)\right)$, where ϑ is the above-mentioned 1-form. Then $T-T^{\vartheta} \in \mathcal{Q} \mathcal{K}_{45}$ and we get $F\left(T-T^{\vartheta}\right)_{X Y Z}=F(T)_{X Y Z}-2 T_{X Y Z}^{\vartheta}$. Computing, we have the values for $F\left(T-T^{\vartheta}\right)_{X Y Z}$ and $\left(T-T^{\vartheta}\right)_{X Y Z}$ given in Table 2, where also the vectors X, Y, Z chosen in each case appear. Hence, the tensor S has a nonzero component in each primitive subspace $\mathcal{Q} \mathcal{K}_{i}$, for $i=1, \ldots, 5$, except for Ψ_{3}. In this case, as the result for the choice of vectors X_{2}, U_{1}, U_{2} suggests, and a computation with Maple shows, we obtain $T-T^{\vartheta} \in \mathcal{Q} \mathcal{K}_{5}$, so $S \in \mathcal{Q} \mathcal{K}_{135}$.

2.2. The complex hyperbolic Grassmannian $A_{S U(3,2)}$

The Lie algebra of $\operatorname{SU}(3,2)$ is

$$
\mathfrak{s u}(3,2)=\left\{\left(\begin{array}{cc}
A & B \\
\bar{B}^{\mathrm{T}} & C
\end{array}\right) \in \mathfrak{s l}(5, \mathbb{C}): A \in \mathfrak{u}(3), C \in \mathfrak{u}(2)\right\} .
$$

The involution τ of $\mathfrak{s u}(3,2)$ given by $\tau(X)=-\bar{X}^{\mathrm{T}}$ defines the Cartan decomposition $\mathfrak{s u}(3,2)=\mathfrak{k}+\mathfrak{p}$, where $\mathfrak{k}=\mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(2))$. We consider the subspace \mathfrak{a} of \mathfrak{p} defined by the matrices with real entries s_{1} at the positions (34) and (43) and s_{2} at (25) and (52). Then \mathfrak{a} is a maximal \mathbb{R}-diagonalizable subalgebra of $\mathfrak{s u}(3,2)$. Let A_{1} and A_{2} be the generators of \mathfrak{a} defined by $\left(s_{1}, s_{2}\right)=(1,0)$ and $(0,1)$, respectively. Let f_{1} and f_{2} be the elements of \mathfrak{a}^{*} given by $f_{j}\left(A_{i}\right)=\delta_{j i}$. Then, the set of positive roots and simple roots (with respect to a suitable order in \mathfrak{a}^{*}) are $\Sigma^{+}=\left\{f_{1} \pm f_{2}, 2 f_{1}, 2 f_{2}, f_{1}, f_{2}\right\}$ and $\Pi=\left\{f_{1}-f_{2}, f_{2}\right\}$, respectively. The positive root vector spaces are

$$
\left.\left.\left.\begin{array}{ll}
\mathfrak{g}_{f_{1}+f_{2}}=\left\{\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & z & -z & 0 \\
0 & -\bar{z} & 0 & 0 & \bar{z} \\
0 & -\bar{z} & 0 & 0 & \bar{z} \\
0 & 0 & z & -z & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{f_{1}-f_{2}}=\left\{\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & z & -z
\end{array} 0\right.\right. \\
0 & -\bar{z} \tag{2.4}\\
0 & 0 \\
-\bar{z} \\
0 & -\bar{z} \\
0 & 0
\end{array} 0\right)-\bar{z}\right)\right\},
$$

$$
\mathfrak{g}_{f_{1}}=\left\{\left(\begin{array}{ccccc}
0 & 0 & w & -w & 0 \tag{2.5}\\
0 & 0 & 0 & 0 & 0 \\
-\bar{w} & 0 & 0 & 0 & 0 \\
-\bar{w} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\right\}, \quad \mathfrak{g}_{f_{2}}=\left\{\left(\begin{array}{ccccc}
0 & w & 0 & 0 & -w \\
-\bar{w} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-\bar{w} & 0 & 0 & 0 & 0
\end{array}\right)\right\}
$$

where $x \in \mathbb{R}, z, w \in \mathbb{C}$. The root vector spaces for the respective opposite roots are the corresponding sets of opposite conjugate transpose matrices. For each $f=f_{1} \pm f_{2}$, let X_{f} and X_{f}^{\prime} be the generators of \mathfrak{g}_{f} in (2.3) obtained by putting $z=1$ and $z=i$, respectively, for each nonnull entry. For $f=2 f_{j}(1 \leq j \leq 2)$, let U_{f} be the generator of \mathfrak{g}_{f} in (2.4) obtained by taking $x=1$ in each nonzero entry. For $f=f_{j}(1 \leq j \leq 2)$, let P_{f} and P_{f}^{\prime} be the generators of \mathfrak{g}_{f} in (2.5) obtained by putting $w=1$ and $w=i$, respectively, for each nonnull entry. Let also X_{f}, $X_{f}^{\prime}, U_{f}, P_{f}, P_{f}^{\prime}$ be the corresponding elements of \mathfrak{g}_{f} for the respective opposite roots $f \in \Sigma \backslash \Sigma^{+}$. We put (for $j=1,2) X_{1}=X_{f_{1}+f_{2}}, Y_{1}=X_{-f_{1}-f_{2}}, X_{1}^{\prime}=X_{f_{1}+f_{2}}^{\prime}, Y_{1}^{\prime}=X_{-f_{1}-f_{2}}, X_{2}=X_{f_{1}-f_{2}}, Y_{2}=X_{-f_{1}+f_{2}}, X_{2}^{\prime}=X_{f_{1}-f_{2}}^{\prime}$, $Y_{2}^{\prime}=X_{-f_{1}+f_{2}}, U_{j}=U_{2 f_{j}}, V_{j}=U_{-2 f_{j}}, P_{j}=P_{f_{j}}, Q_{j}=P_{-f_{j}}, P_{j}^{\prime}=P_{f_{j}}^{\prime}, Q_{j}^{\prime}=P_{-f_{j}}^{\prime}$.

The centralizer of \mathfrak{a} in \mathfrak{k} is $Z_{\mathfrak{k}}(\mathfrak{a})=\{i \cdot \operatorname{diag}(r, s, t, t, s): r, s, t \in \mathbb{R}, r+2 s+2 t=0\}$. Then $C_{1}=$ $\operatorname{diag}(2 i, 0,-i,-i, 0)$ and $C_{2}=\operatorname{diag}(2 i,-i, 0,0,-i)$ generate $Z_{\mathfrak{k}}(\mathfrak{a})$, and $Z_{\mathfrak{k}}(\mathfrak{a})+\mathfrak{a}=\left\langle C_{1}, C_{2}, A_{1}, A_{2}\right\rangle$ is a Cartan subalgebra of $\mathfrak{s u}(3,2)$. We so have the restricted-root space decomposition $\mathfrak{s u}(3,2)=\left(Z_{\mathfrak{k}}(\mathfrak{a})+\mathfrak{a}\right)+\sum_{f \in \Sigma} \mathfrak{g}_{f}$. We also have the Iwasawa decomposition $\mathfrak{s u}(3,2)=\mathfrak{k}+\mathfrak{a}+\mathfrak{n}$, where $\mathfrak{n}=\sum_{f \in \Sigma^{+}} \mathfrak{g}_{f}=\left\langle X_{j}, X_{j}^{\prime}, U_{j}, P_{j}, P_{j}^{\prime}: j=1,2\right\rangle$.

The elements

$$
E_{1}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i & 0 \\
0 & 0 & 0 & 0 & i
\end{array}\right), \quad E_{2}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & i \\
0 & 0 & 0 & i & 0
\end{array}\right),
$$

of $\mathfrak{k}=\mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(2)) \subset \mathfrak{s u}(3,2)$ satisfy $\left[E_{1}, E_{2}\right]=2 E_{3},\left[E_{2}, E_{3}\right]=2 E_{1},\left[E_{3}, E_{1}\right]=2 E_{2}$, and the compact subalgebra $\mathfrak{u} \cong \mathfrak{s p}(1)$ generated by $\left\{E_{1}, E_{2}, E_{3}\right\}$ is an ideal of \mathfrak{k}. The isotropy representation $\mathfrak{u} \rightarrow \mathfrak{g l}(\mathfrak{p})$ defines a quaternionic Kähler structure on $A_{S U(3,2)}$. The action of each E_{i} on \mathfrak{p} and the isomorphisms $\mathfrak{p} \cong \mathfrak{s u}(3,2) / \mathfrak{k} \cong \mathfrak{a}+\mathfrak{n}$ determine the complex structures $J_{i}(i=1,2,3)$ acting on $\mathfrak{a}+\mathfrak{n}$. The action on the elements $A_{j}, X_{j}, X_{j}^{\prime}, U_{j}, P_{j}, P_{j}^{\prime}$, ($j=1,2$) of the basis of $\mathfrak{a}+\mathfrak{n}$ is given by

	A_{1}	A_{2}	X_{1}	X_{1}^{\prime}	X_{2}	X_{2}^{\prime}	U_{1}	U_{2}	P_{1}	P_{1}^{\prime}	P_{2}	P_{2}^{\prime}
J_{1}	$-U_{1}$	U_{2}	X_{1}^{\prime}	$-X_{1}$	X_{2}^{\prime}	$-X_{2}$	A_{1}	$-A_{2}$	P_{1}^{\prime}	$-P_{1}$	$-P_{2}^{\prime}$	P_{2}
J_{2}	$\frac{1}{2}\left(X_{1}-X_{2}\right)$	$\frac{1}{2}\left(X_{1}+X_{2}\right)$	$-A_{1}$	$-U_{1}$	$A_{1}-A_{2}$	U_{1}	$\frac{1}{2}\left(X_{1}^{\prime}-X_{2}^{\prime}\right)$	$-\frac{1}{2}\left(X_{1}^{\prime}+X_{2}^{\prime}\right)$	P_{2}	P_{2}^{\prime}	$-P_{1}$	$-P_{1}^{\prime}$
J_{3}	$\frac{1}{2}\left(X_{1}^{\prime}-X_{2}^{\prime}\right)$	$\frac{1}{2}\left(X_{1}^{\prime}+X_{2}^{\prime}\right)$	$U_{1}-U_{2}$	$+U_{2}$	$-A_{1}$	$-U_{1}$	$+U_{2}$	$-\frac{1}{2}\left(X_{1}-X_{2}\right)$	$\frac{1}{2}\left(X_{1}+X_{2}\right)$	$-P_{2}^{\prime}$	P_{2}	$-P_{1}^{\prime}$
			$-A_{2}$	$-U_{2}$	$-A_{2}$							

We consider the scalar product \langle,$\rangle induced in \mathfrak{a}+\mathfrak{n}$ by the isomorphism $\mathfrak{p} \cong \mathfrak{a}+\mathfrak{n}$ and $\frac{1}{20} B_{\mid \mathfrak{p} \times \mathfrak{p} \text {. This product }}$ makes the basis orthogonal, with $\left\langle A_{j}, A_{j}\right\rangle=\left\langle U_{j}, U_{j}\right\rangle=\left\langle P_{j}, P_{j}\right\rangle=\left\langle P_{j}^{\prime}, P_{j}^{\prime}\right\rangle=1,\left\langle X_{j}, X_{j}\right\rangle=\left\langle X_{j}^{\prime}, X_{j}^{\prime}\right\rangle=2$, and $\left(\mathfrak{a}+\mathfrak{n},\langle\rangle,, J_{1}, J_{2}, J_{3}\right)$ is a quaternion-Hermitian vector space.

2.2.1. Homogeneous descriptions of $A_{S U(3,2)}$ and homogeneous quaternionic Kähler structures

By using Theorems 3 and 4, and from the refined Langlands decompositions of the parabolic subalgebras of $\mathfrak{s u}(3,2)$, we will now obtain the homogeneous descriptions of $A_{S U(3,2)}$. The standard parabolic subalgebras of $\mathfrak{s u}(3,2)$ are parametrized by the subsets $\Pi, \emptyset, \Psi_{1}=\left\{f_{1}-f_{2}\right\}$ and $\Psi_{2}=\left\{f_{2}\right\}$ of Π.
The case $\Psi=\Pi$. We have $[\Psi]=\Sigma$, and $\mathfrak{e}_{\Pi}^{\prime}=\mathfrak{a}_{\Pi}=\mathfrak{n}_{\Pi}=\{0\}$, so the refined Langlands decomposition is $\mathfrak{p}_{\Pi}=\mathfrak{s u}(3,2)+\{0\}+\{0\}+\{0\}$. The only transitive action coming from $\Psi=\Pi$ is that of the full isometry group $S U(3,2)$, and we have the description of $A_{S U(3,2)}$ as the symmetric space $S U(3,2) / S(U(3) \times U(2))$. The

Table 3

A_{1}	A_{2}	X_{1}	X_{1}^{\prime}	X_{2}	X_{2}^{\prime}		U_{2}	P_{1}	P_{1}^{\prime}	P_{2}	P_{2}^{\prime}
$S_{A_{1}} 0$	0	$\begin{aligned} & \lambda_{1} X_{1}^{\prime} \\ & -\lambda_{2} X_{1}^{\prime} \end{aligned}$	$\begin{aligned} & \lambda_{2} X_{1} \\ & -\lambda_{1} X_{1} \end{aligned}$	$\begin{aligned} & \lambda_{1} X_{2}^{\prime} \\ & -\lambda_{2} X_{2}^{\prime} \end{aligned}$	$\begin{aligned} & \lambda_{2} X_{2} \\ & -\lambda_{1} X_{2} \end{aligned}$			$\begin{aligned} & 3 \lambda_{1} P_{1}^{\prime} \\ & +2 \lambda_{2} P_{1}^{\prime} \end{aligned}$	$\begin{aligned} & -3 \lambda_{1} P_{1} \\ & -2 \lambda_{2} P_{1} \end{aligned}$	$\begin{aligned} & 2 \lambda_{1} P_{2}^{\prime} \\ & +3 \lambda_{2} P_{2}^{\prime} \end{aligned}$	$\begin{aligned} & -2 \lambda_{1} P_{2} \\ & -3 \lambda_{2} P_{2} \end{aligned}$
$S_{A_{2}} 0$	0	$\begin{aligned} & \mu_{1} X_{1}^{\prime} \\ & -\mu_{2} X_{1}^{\prime} \end{aligned}$	$\begin{aligned} & \mu_{2} X_{1} \\ & -\mu_{1} X_{1} \end{aligned}$	$\begin{aligned} & \mu_{1} X_{2}^{\prime} \\ & -\mu_{2} X_{2}^{\prime} \end{aligned}$	$\begin{aligned} & \mu_{2} X_{2} \\ & -\mu_{1} X_{2} \end{aligned}$	0		$\begin{aligned} & 3 \mu_{1} P_{1}^{\prime} \\ & +2 \mu_{2} P_{1}^{\prime} \end{aligned}$	$\begin{aligned} & -3 \mu_{1} P_{1} \\ & -2 \mu_{2} P_{1} \end{aligned}$	$\begin{aligned} & 2 \mu_{1} P_{2}^{\prime} \\ & +3 \mu_{2} P_{2}^{\prime} \end{aligned}$	$\begin{aligned} & -2 \mu_{1} P_{2} \\ & -3 \mu_{2} P_{2} \end{aligned}$
$S_{U_{1}}-2 U_{1}$	0	X_{2}^{\prime}	$-X_{2}$	X_{1}^{\prime}	$-X_{1}$	$2 A_{1}$	0	P_{1}^{\prime}	- P_{1}	0	0
$S_{U_{2}} 0$	$-2 U_{2}$	X_{2}^{\prime}	$-X_{2}$	X_{1}^{\prime}	$-X_{1}$	0	$2 A_{2}$	0	0	P_{2}^{\prime}	$-P_{2}$
$s_{X_{1}}-X_{1}$	$-X_{1}$	$\begin{aligned} & 2 A_{1} \\ & +2 A_{2} \end{aligned}$	0	0	$\begin{aligned} & -2 U_{1} \\ & -2 U_{2} \end{aligned}$	X_{2}^{\prime}		$-P_{2}$	$-P_{2}^{\prime}$	P_{1}	P_{1}^{\prime}
$S_{X_{1}^{\prime}}-X_{1}^{\prime}$	$-X_{1}^{\prime}$	0	$\begin{aligned} & 2 A_{1} \\ & +2 A_{2} \end{aligned}$	$\begin{aligned} & 2 U_{1} \\ & +2 U_{2} \end{aligned}$	0	$-X_{2}$	- X_{2}	P_{2}^{\prime}	$-P_{2}$	P_{1}^{\prime}	$-P_{1}$
$S_{X_{2}}-X_{2}$	X_{2}	0	$\begin{aligned} & -2 U_{1} \\ & +2 U_{2} \end{aligned}$	$\begin{aligned} & 2 A_{1} \\ & -2 A_{2} \end{aligned}$	0	X_{1}^{\prime}	$-X_{1}^{\prime}$	P_{2}	P_{2}^{\prime}	$-P_{1}$	$-P_{1}^{\prime}$
$S_{X_{2}^{\prime}}-X_{2}^{\prime}$	X_{2}^{\prime}	$\begin{aligned} & 2 U_{1} \\ & -2 U_{2} \end{aligned}$	0	0	$\begin{aligned} & 2 A_{1} \\ & -2 A_{2} \end{aligned}$	$-X_{1}$		$-P_{2}^{\prime}$	P_{2}	$-P_{1}^{\prime}$	P_{1}
$S_{P_{1}}-P_{1}$	0	P_{2}	P_{2}^{\prime}	P_{2}	$-P_{2}^{\prime}$	P_{1}^{\prime}		A_{1}	$-U_{1}$	$\frac{1}{2}\left(X_{1}-X_{2}\right)$	$\frac{1}{2}\left(X_{2}^{\prime}-X_{1}^{\prime}\right)$
$S_{P_{1}^{\prime}}-P_{1}^{\prime}$	0	P_{2}^{\prime}	$-_{2}$	P_{2}^{\prime}	P_{2}	$-P_{1}$		U_{1}	A_{1}	$\frac{1}{2}\left(X_{1}^{\prime}-X_{2}^{\prime}\right)$	$\frac{1}{2}\left(X_{1}-X_{2}\right)$
$S_{P_{2}} 0$	$-P_{2}$	P_{1}	P_{1}^{\prime}	P_{1}	P_{1}^{\prime}	0	P_{2}^{\prime}	$-\frac{1}{2}\left(X_{1}+X_{2}\right)$	$-\frac{1}{2}\left(X_{1}^{\prime}+X_{2}^{\prime}\right)$	A_{2}	$-U_{2}$
$S_{P_{2}^{\prime}} 0$	$-P_{2}^{\prime}$	P_{1}^{\prime}	${ }_{-P_{1}}$	P_{1}^{\prime}	${ }_{-P_{1}}$	0		$\frac{1}{2}\left(X_{1}^{\prime}+X_{2}^{\prime}\right)$	$-\frac{1}{2}\left(X_{1}+X_{2}\right)$	U_{2}	A_{2}

associated reductive decomposition is the Cartan decomposition $\mathfrak{s u}(3,2)=\mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(2))+\mathfrak{p}$, and the corresponding homogeneous quaternionic Kähler structure is $S=0$.
The case $\Psi=\emptyset$. Then $\mathfrak{r}_{\emptyset}^{\prime}=\{0\}, \mathfrak{e}_{\emptyset}^{\prime}=Z_{\mathfrak{k}}(\mathfrak{a}), \mathfrak{a}_{\emptyset}=\mathfrak{a}$, so the refined Langlands decomposition of the minimal parabolic subalgebra is $\mathfrak{p}_{\emptyset}=\{0\}+Z_{\mathfrak{k}}(\mathfrak{a})+\mathfrak{a}+\mathfrak{n}$. For each connected closed subgroup E of $E^{\prime} A \cong U(1) \times U(1) \times \mathbb{R}^{2}$ we get a cocompact subgroup $\hat{G}=E N$ of $\operatorname{SU}(3,2)$, where N is the nilpotent factor in the Iwasawa decomposition of $S U(3,2)$. In order to get a transitive action it is sufficient that the projection of $\mathfrak{e} \subset Z_{\mathfrak{k}}(\mathfrak{a})+\mathfrak{a}=\left\langle C_{1}, C_{2}, A_{1}, A_{2}\right\rangle$ to \mathfrak{a} be surjective. There are infinitely many possible choices of such a subspace \mathfrak{e}.

If $\operatorname{dim} \mathfrak{e}=2$, then $\mathfrak{e}=\mathfrak{e}_{\lambda, \mu}=\left\langle\lambda_{1} C_{1}+\lambda_{2} C_{2}+A_{1}, \mu_{1} C_{1}+\mu_{2} C_{2}+A_{2}\right\rangle$, for some $\lambda=\left(\lambda_{1}, \lambda_{2}\right), \mu=\left(\mu_{1}, \mu_{2}\right) \in \mathbb{R}^{2}$, and it generates the Lie subgroup $E_{\lambda, \mu} \cong \mathbb{R}^{2}$ of $S U(3,2)$ such that $\hat{G}=E_{\lambda, \mu} N$ acts simply transitively on $A_{S U(3,2)}$. In particular, the choice $\mathfrak{e}=\mathfrak{a}$ gives the usual description of $A_{S U(3,2)}$ as the solvable Lie group $A N$. The reductive decomposition associated with the description $A_{S U(3,2)}=E_{\lambda, \mu} N$ is $\hat{\mathfrak{g}}^{\lambda, \mu}=\{0\}+\hat{\mathfrak{g}}^{\lambda, \mu}$, where $\hat{\mathfrak{g}}^{\lambda, \mu}=$ $\left\langle\lambda_{1} C_{1}+\lambda_{2} C_{2}+A_{1}, \mu_{1} C_{1}+\mu_{2} C_{2}+A_{2}, X_{j}, X_{j}^{\prime}, U_{j}, P_{j}, P_{j}^{\prime}: j=1,2\right\rangle$. Then we have a four-parameter family of homogeneous Riemannian structures $S^{\lambda, \mu}$ corresponding to the family of reductive decompositions $\hat{\mathfrak{g}}^{\lambda, \mu}=\{0\}+\hat{\mathfrak{g}}^{\lambda, \mu}$. With the identifications in (1.2), $S=S^{\lambda, \mu}$ is given at o by Table 3 .

Eq. (1.1) are satisfied with the following nonzero values of θ^{i} at $o: \theta^{1}\left(A_{1}\right)=\lambda_{1}-\lambda_{2}, \theta^{1}\left(A_{2}\right)=\mu_{1}-\mu_{2}$, $\theta^{1}\left(U_{1}\right)=-\theta^{1}\left(U_{2}\right)=1, \theta^{2}\left(X_{1}\right)=-\theta^{2}\left(X_{2}\right)=\theta^{3}\left(X_{1}^{\prime}\right)=-\theta^{3}\left(X_{2}^{\prime}\right)=-2$. We have $S=\theta+T$. It is easily seen that $\Theta \in \mathcal{Q} \mathcal{K}_{12} \backslash \mathcal{Q} \mathcal{K}_{1} \cup \mathcal{Q} \mathcal{K}_{2}$. Since moreover we have $\vartheta=\frac{1}{28}\left\langle 11 A_{1}+7 A_{2}+\left(\lambda_{1}-\lambda_{2}\right) U_{1}-\left(\mu_{1}-\mu_{2}\right) U_{2}, \cdot\right\rangle$, $\left(T-T^{\vartheta}\right)_{X_{2} U_{2} X_{1}^{\prime}}=-\frac{5}{14}$, and $F\left(T-T^{\vartheta}\right)_{X_{2} U_{2} X_{1}^{\prime}}=-\frac{12}{7}$, the tensor S has a nonzero component in each primitive subspace $\mathcal{Q K}_{i}, i, \ldots, 5$.

If $\operatorname{dim} \mathfrak{e}=3$, we can write $\mathfrak{e}=\left\langle\nu_{1} C_{1}+\nu_{2} C_{2}, \lambda_{1} C_{1}+\lambda_{2} C_{2}+A_{1}, \mu_{1} C_{1}+\mu_{2} C_{2}+A_{2}\right\rangle$, where $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$, $\mu=\left(\mu_{1}, \mu_{2}\right), v=\left(\nu_{1}, \nu_{2}\right) \in \mathbb{R}^{2}$. The corresponding reductive decomposition is $\hat{\mathfrak{g}}_{v}^{\lambda, \mu}=\mathfrak{h}_{v}+\mathfrak{m}^{\lambda, \mu}$, where $\mathfrak{h}_{\nu}=\left\langle\nu_{1} C_{1}+\nu_{2} C_{2}\right\rangle \cong \mathfrak{u}(1)$ and $\mathfrak{m}^{\lambda, \mu}=\left\langle\lambda_{1} C_{1}+\lambda_{2} C_{2}+A_{1}, \mu_{1} C_{1}+\mu_{2} C_{2}+A_{2}, X_{j}, X_{j}^{\prime}, U_{j}, P_{j}, P_{j}^{\prime}: j=1,2\right\rangle$, which gives $A_{S U(3,2)} \equiv\left(U(1) \times \mathbb{R}^{2}\right) N / U(1)$. The associated homogeneous quaternionic Kähler structures are the structures $S^{\lambda, \mu}$ above.

If $\operatorname{dim} \mathfrak{e}=4$, the reductive decomposition is $\hat{\mathfrak{g}}^{\prime}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$, where $\hat{\mathfrak{g}}^{\prime}=\mathfrak{p}_{\emptyset}, \mathfrak{h}^{\prime}=Z_{\mathfrak{k}}(\mathfrak{a})$ and $\mathfrak{m}^{\prime}=\mathfrak{a}+\mathfrak{n}$, which gives the description $A_{S U(3,2)} \equiv\left(U(1) \times U(1) \times \mathbb{R}^{2}\right) N /(U(1) \times U(1))$. The associated structure S^{\prime} coincides with the above structure $S^{\lambda, \mu}$, for $\lambda=\mu=0$.

The case $\Psi=\Psi_{1}$. Then $\left[\Psi_{1}\right]=\left\{ \pm\left(f_{1}-f_{2}\right)\right\}$ and $\mathfrak{p}_{\Psi_{1}}=\mathfrak{l}_{\Psi_{1}}^{\prime}+\mathfrak{e}_{\Psi_{1}}^{\prime}+\mathfrak{a}_{\Psi_{1}}+\mathfrak{n}_{\Psi_{1}}$, with $\mathfrak{e}_{\Psi_{1}}^{\prime}=i \mathbb{R} \cdot \operatorname{diag}(-4,1,1,1,1)=$ $\left\langle C_{1}+C_{2}\right\rangle, \mathfrak{a}_{\Psi_{1}}=\left\langle A_{1}+A_{2}\right\rangle, \mathfrak{n}_{\Psi_{1}}=\left\langle X_{1}, X_{1}^{\prime}, U_{1}, U_{2}, P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}\right\rangle$, and $\mathfrak{r}_{\Psi_{1}}^{\prime}=\left\langle A_{1}-A_{2}\right\rangle+\mathfrak{e}^{\prime} \Psi_{1}+\left\langle X_{2}, Y_{2}, X_{2}^{\prime}, Y_{2}^{\prime}\right\rangle$, $\mathfrak{e}_{\Psi_{1}}^{\prime} \frac{1}{\Psi_{1}}=\left\langle C_{1}-C_{2}\right\rangle \subset Z_{\mathfrak{k}}(\mathfrak{a})$, and we have

$$
\mathfrak{r}_{\Psi_{1}}^{\prime}=\left\{\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & \text { ir } & z & w & s \\
0 & -\bar{z} & -i r & -s & \bar{w} \\
0 & \bar{w} & -s & -i r & -\bar{z} \\
0 & s & w & z & \text { ir }
\end{array}\right): r, s \in \mathbb{R}, z, w \in \mathbb{C}\right\} \cong \mathfrak{s l}(2, \mathbb{C})
$$

For each connected closed subgroup E of $P_{\Psi_{1}}$ whose Lie algebra \mathfrak{e} is a nontrivial subspace of $\mathfrak{e}_{\Psi_{1}}^{\prime}+\mathfrak{a}_{\Psi_{1}}$, we get a cocompact subgroup $\hat{G}=L E N_{\Psi_{1}}$ of $S U(3,2)$, with $L \cong S l(2, \mathbb{C})$. If $\mathfrak{e} \neq \mathfrak{e}_{\Psi_{1}}^{\prime}$, then \hat{G} acts transitively on $A_{S U(3,2)}$.

If $\operatorname{dim} \mathfrak{e}=1$, we get $A_{S U(3,2)} \equiv S l(2, \mathbb{C}) \mathbb{R} N_{\Psi_{1}} / S U(2)$. For each $\lambda \in \mathbb{R}$, we have a subspace $\mathfrak{e}=\mathfrak{e}_{\lambda}$ of $\mathfrak{e}_{\Psi_{1}}^{\prime}+\mathfrak{a}_{\Psi_{1}}=$ $\left\langle C_{1}+C_{2}, A_{1}+A_{2}\right\rangle$, generated by $\lambda\left(C_{1}+C_{2}\right)+A_{1}+A_{2}$. One has the one-parameter family of reductive decompositions $\hat{\mathfrak{g}}^{\lambda}=\mathfrak{h}+\mathfrak{m}^{\lambda}$, where the isotropy algebra is $\mathfrak{h}=\hat{\mathfrak{g}} \cap \mathfrak{k}=\mathfrak{l}_{\Psi_{1}}^{\prime} \cap \mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(2))=\left\langle C_{1}-C_{2},\left(X_{2}\right)_{\mathfrak{k}},\left(X_{2}^{\prime}\right)_{\mathfrak{k}} \cong \mathfrak{s u}(2)\right.$ and $\mathfrak{m}^{\lambda}=\left\langle\lambda\left(C_{1}+C_{2}\right)+A_{1}, \lambda\left(C_{1}+C_{2}\right)+A_{2}, X_{1}, X_{1}^{\prime},\left(X_{2}\right)_{\mathfrak{p}},\left(X_{2}^{\prime}\right) \mathfrak{p}, U_{1}, U_{2}, P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}\right\rangle$. The associated oneparameter family of structures $S=S^{\lambda}$ is given at o by the values in Table 3 except that $S_{X_{1}}(\cdot)=S_{X_{2}}(\cdot)=0$, and with $\lambda_{1}=\lambda_{2}=\mu_{1}=\mu_{2}=\lambda$. Eq. (1.1) are satisfied with the following nonzero values of θ^{i} at $o: \theta^{1}\left(U_{1}\right)=-\theta^{1}\left(U_{2}\right)=1$, $\theta^{2}\left(X_{1}\right)=\theta^{3}\left(X_{1}^{\prime}\right)=-2$.

We have $S=\Theta+T$. It is easily seen that $\Theta \in \mathcal{Q} \mathcal{K}_{1}$ with associated form $\theta=\left\langle A_{1}+A_{2}, \cdot\right\rangle$. As for the specific type of T inside $\mathcal{Q} \mathcal{K}_{345}$, we first have that, as $\vartheta=\frac{9}{28}\left\langle A_{1}+A_{2}, \cdot\right\rangle$, the $\mathcal{Q} \mathcal{K}_{3}$-component of T does not vanish. Computing as before, we get $\left(T-T^{\vartheta}\right)_{U_{1} X_{2}^{\prime} X_{1}}=-\frac{19}{14}$ and $F\left(T-T^{\vartheta}\right)_{U_{1} X_{2}^{\prime} X_{1}}=\frac{44}{7}$. Hence $T-T^{\vartheta} \in \mathcal{Q} \mathcal{K}_{45} \backslash \mathcal{Q} \mathcal{K}_{4} \cup \mathcal{Q} \mathcal{K}_{5}$. Hence $S \in \mathcal{Q K}_{1345}$.

If $\operatorname{dim} \mathfrak{e}=2$, that is, $\mathfrak{e}=\left\langle C_{1}+C_{2}, A_{1}+A_{2}\right\rangle \cong \mathfrak{u}(1) \oplus \mathbb{R}$, we have the reductive decomposition $\hat{\mathfrak{g}}^{\prime}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$, where $\mathfrak{h}^{\prime}=\left(\mathfrak{l}_{\Psi_{1}}^{\prime}+\mathfrak{e}_{\Psi_{1}}^{\prime}\right) \cap \mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(2))=\left\langle C_{1}, C_{2},\left(X_{2}\right)_{\mathfrak{k}},\left(X_{2}^{\prime}\right) \mathfrak{k}\right\rangle \cong \mathfrak{u}(1) \oplus \mathfrak{s u}(2)$, and $\mathfrak{m}^{\prime}=\left\langle A_{1}, A_{2}, X_{1}, X_{1}^{\prime},\left(X_{2}\right)_{\mathfrak{p}},\left(X_{2}^{\prime}\right)_{\mathfrak{p}}, U_{1}, U_{2}, P_{1}, P_{1}^{\prime}, P_{2}, P_{2}^{\prime}\right\rangle$. This gives the description $A_{S U(3,2)} \equiv \operatorname{Sl}(2, \mathbb{C})(U(1) \times$ $\mathbb{R}) N_{\Psi_{1}} /(U(1) \times S U(2))$. The associated structure S^{\prime} coincides with the above structure S^{λ}, for $\lambda=0$.
The case $\Psi=\Psi_{2}$. Then $\left[\Psi_{2}\right]=\left\{ \pm 2 f_{2}, \pm f_{2}\right\}$ and $\mathfrak{p}_{\Psi_{2}}=\mathfrak{r}_{\Psi_{2}}^{\prime}+\mathfrak{e}_{\Psi_{2}}^{\prime}+\mathfrak{a}_{\Psi_{2}}+\mathfrak{n}_{\Psi_{2}}$, where $\mathfrak{e}_{\Psi_{2}}^{\prime}=i$. $\mathbb{R} \operatorname{diag}(2,2,-3,-3,2)=\left\langle 3 C_{1}-2 C_{2}\right\rangle, \mathfrak{a}_{\Psi_{2}}=\left\langle A_{1}\right\rangle, \mathfrak{n}_{\Psi_{2}}=\left\langle X_{1}, X_{1}^{\prime}, X_{2}, X_{2}^{\prime}, U_{1}, P_{1}, P_{1}^{\prime}\right\rangle$, and $\mathfrak{r}_{\Psi_{2}}^{\prime}=\left\langle A_{2}\right\rangle+$ $\mathfrak{e}^{\prime} \frac{1}{\Psi_{2}}+\left\langle U_{2}, V_{2}, P_{2}, Q_{2}, P_{2}^{\prime}, Q_{2}^{\prime}\right\rangle, \mathfrak{e}^{\prime} \frac{1}{\Psi_{2}}=\left\langle C_{2}\right\rangle \subset Z_{\mathfrak{k}}(\mathfrak{a})$, and we have

$$
\mathfrak{r}_{\Psi_{2}}^{\prime}=\left\{\left(\begin{array}{ccccc}
i(r+s) & v & 0 & 0 & w \\
-\bar{v} & -i r & 0 & 0 & z \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\bar{w} & \bar{z} & 0 & 0 & -i s
\end{array}\right): r, s \in \mathbb{R}, v, w, z \in \mathbb{C}\right\} \cong \mathfrak{s u}(2,1)
$$

For each connected closed subgroup E of $P_{\Psi_{2}}$ whose Lie algebra \mathfrak{e} is a nontrivial subspace of $\mathfrak{e}_{\Psi_{2}}^{\prime}+\mathfrak{a}_{\Psi_{2}}, \mathfrak{e} \neq \mathfrak{e}_{\Psi_{2}}^{\prime}$, we get a cocompact subgroup $\hat{G}=L E N_{\Psi_{2}}$ of $S U(3,2)$, with $L \cong S U(2,1)$, which acts transitively on $A_{S U(3,2)}$.

If $\operatorname{dim} \mathfrak{e}=1$, we obtain $A_{S U(3,2)} \equiv S U(2,1) \mathbb{R} N_{\Psi_{2}} / U(2)$. In fact, for each one-dimensional subspace \mathfrak{e} of $\mathfrak{e}_{\Psi_{2}}^{\prime}+\mathfrak{a}_{\Psi_{2}}=\left\langle 3 C_{1}-2 C_{2}, A_{1}\right\rangle$, with $\mathfrak{e} \neq \mathfrak{e}^{\prime} \Psi_{2}$, we have a reductive decomposition. We can suppose that $\mathfrak{e}=\mathfrak{e}_{\lambda}$ is generated by $\lambda\left(3 C_{1}-2 C_{2}\right)+A_{1}$, for a certain $\lambda \in \mathbb{R}$. So we get a one-parameter family of reductive decompositions $\hat{\mathfrak{g}}^{\lambda}=\mathfrak{h}+\mathfrak{m}^{\lambda}$, where $\mathfrak{h}=\hat{\mathfrak{g}}^{\lambda} \cap \mathfrak{k}=\mathfrak{l}_{\Psi_{2}}^{\prime} \cap \mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(2))=\left\langle C_{2},\left(U_{2}\right)_{\mathfrak{k}},\left(P_{2}\right)_{\mathfrak{k}},\left(P_{2}^{\prime}\right) \mathfrak{k}\right\rangle \cong \mathfrak{u}(2)$, and $\mathfrak{m}^{\lambda}=\left\langle\lambda\left(3 C_{1}-2 C_{2}\right)+A_{1}, A_{2}, X_{1}, X_{1}^{\prime}, X_{2}, X_{2}^{\prime}, U_{1},\left(U_{2}\right)_{\mathfrak{p}}, P_{1}, P_{1}^{\prime},\left(P_{2}\right)_{\mathfrak{p}},\left(P_{2}^{\prime}\right)_{\mathfrak{p}}\right\rangle$. The associated one-parameter family of homogeneous structures $S=S^{\lambda}$ is given at o by the values in Table 3 except that $S_{A_{2}}(\cdot)=S_{U_{2}}(\cdot)=$ $S_{P_{2}}(\cdot)=S_{P_{2}^{\prime}}(\cdot)=0$ and with $\lambda_{1}=3 \lambda, \lambda_{2}=-2 \lambda$. Equations Eq. (1.1) are satisfied with the following nonzero values of θ^{i} at $o: \theta^{1}\left(A_{1}\right)=5 \lambda, \theta^{1}\left(U_{1}\right)=1, \theta^{2}\left(X_{1}\right)=-\theta^{2}\left(X_{2}\right)=\theta^{3}\left(X_{1}^{\prime}\right)=-\theta^{3}\left(X_{2}^{\prime}\right)=-2$.

We have $S=\Theta+T$, with $\Theta \in \mathcal{Q} \mathcal{K}_{12} \backslash \mathcal{Q} \mathcal{K}_{1} \cup \mathcal{Q} \mathcal{K}_{2}$. Since moreover we have $\vartheta=\frac{1}{28}\left\langle 7 A_{1}+5 \lambda U_{1}, \cdot\right\rangle$, $\left(T-T^{\vartheta}\right)_{X_{1} U_{2} X_{2}^{\prime}}=\frac{3}{4}$, and $F\left(T-T^{\vartheta}\right)_{X_{1} U_{2} X_{2}^{\prime}}=-\frac{1}{2}$, the tensor S has a nonzero component in each primitive subspace $\mathcal{Q} \mathcal{K}_{i}, i, \ldots, 5$.

If $\operatorname{dim} \mathfrak{e}=2$, then $\mathfrak{e}=\left\langle 3 C_{1}-2 C_{2}, A_{1}\right\rangle \cong \mathfrak{u}(1) \oplus \mathbb{R}$, and we have the reductive decomposition $\hat{\mathfrak{g}}^{\prime}=$ $\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$, where $\mathfrak{h}^{\prime}=\hat{\mathfrak{g}}^{\prime} \cap \mathfrak{k}=\left(\mathfrak{l}_{\Psi_{2}}^{\prime}+\mathfrak{c}_{\Psi_{2}}^{\prime}\right) \cap \mathfrak{s}(\mathfrak{u}(3) \oplus \mathfrak{u}(2))=\left\langle C_{1}, C_{2},\left(U_{2}\right)_{\mathfrak{k}},\left(P_{2}\right)_{\mathfrak{k}},\left(P_{2}^{\prime}\right) \mathfrak{k}\right\rangle \cong \mathfrak{u}(1) \oplus \mathfrak{u}(2)$, and $\mathfrak{m}_{\Psi_{2}}^{\prime}=\left\langle A_{1}, A_{2}, X_{1}, X_{1}^{\prime}, X_{2}, X_{2}^{\prime}, U_{1},\left(U_{2}\right)_{\mathfrak{p}}, P_{1}, P_{1}^{\prime},\left(P_{2}\right)_{\mathfrak{p}},\left(P_{2}^{\prime}\right)_{\mathfrak{p}}\right\rangle$, which is associated with the description $A_{S U(3,2)} \equiv S U(2,1)(U(1) \times \mathbb{R}) N_{\Psi_{2}} /(U(1) \times U(2))$. The corresponding structure S^{\prime} coincides with the above structure S^{λ}, for $\lambda=0$.

2.3. The quaternionic hyperbolic space $A_{S p(3,1)}=\mathbb{H} H(3)$

The Lie algebra $\mathfrak{s p}(3,1)$ can be described as the subalgebra of $\mathfrak{g l}(8, \mathbb{C})$ of all matrices of the form

$$
X=\left(\begin{array}{cccc}
Z & P^{\mathrm{T}} & W & Q^{\mathrm{T}} \tag{2.6}\\
\bar{P} & i c & Q & \alpha \\
-\bar{W} & \bar{Q}^{\mathrm{T}} & \bar{Z} & -\bar{P}^{\mathrm{T}} \\
\bar{Q} & -\bar{\alpha} & -P & -i c
\end{array}\right) \text {, }
$$

where $Z=\left(\begin{array}{ccc}i a_{1} & z_{2} & z_{3} \\ -z_{2} & i a_{2} & z_{1} \\ -\bar{z}_{3} & -\bar{z}_{1} & i a_{3}\end{array}\right) \in \mathfrak{u}(3), W=\left(\begin{array}{lll}u_{1} & w_{2} & w_{3} \\ w_{2} & u_{2} & w_{1} \\ w_{3} & w_{1} & u_{3}\end{array}\right)$ is complex symmetric, $c \in \mathbb{R}, \alpha \in \mathbb{C}$, and $P=\left(p_{1}, p_{2}, p_{3}\right), Q=\left(q_{1}, q_{2}, q_{3}\right) \in \mathbb{C}^{3}$. The involution τ of $\mathfrak{s p}(3,1)$ given by $\tau(X)=-\bar{X}^{\mathrm{T}}$ defines the Cartan decomposition $\mathfrak{s p}(3,1)=\mathfrak{k}+\mathfrak{p}$, where

$$
\mathfrak{k}=\left\{\left(\begin{array}{cccc}
Z & 0 & W & 0 \\
0 & i c & 0 & \alpha \\
-\bar{W} & 0 & \bar{Z} & 0 \\
0 & -\bar{\alpha} & 0 & -i c
\end{array}\right)\right\} \cong \mathfrak{s p}(3) \oplus \mathfrak{s p}(1), \quad \mathfrak{p}=\left\{\left(\begin{array}{cccc}
0 & P^{\mathrm{T}} & 0 & Q^{\mathrm{T}} \\
\bar{P} & 0 & Q & 0 \\
0 & \bar{Q}^{\mathrm{T}} & 0 & -\bar{P}^{\mathrm{T}} \\
\bar{Q} & 0 & -P & 0
\end{array}\right)\right\}
$$

The element A_{0} of \mathfrak{p} obtained by taking $P=(1,0,0)$ and $Q=(0,0,0)$ generates a maximal \mathbb{R}-diagonalizable subalgebra \mathfrak{a} of $\mathfrak{s p}(3,1)$. The set of roots Σ corresponding to \mathfrak{a} is $\Sigma=\left\{ \pm f_{0}, \pm 2 f_{0}\right\}$, where $f_{0} \in \mathfrak{a}^{*}$ is given by $f_{0}\left(A_{0}\right)=1$. The set $\Pi=\left\{f_{0}\right\}$ is a system of simple roots and the corresponding positive root system is $\Sigma^{+}=\left\{f_{0}, 2 f_{0}\right\}$. We have generators $X_{j}, Y_{j}, X_{j}^{\prime}, Y_{j}^{\prime}, U_{j}, V_{j}, U_{j}^{\prime}, V_{j}^{\prime}$ of the root spaces $\mathfrak{g}_{f}, f \in \Sigma$, which are represented by the matrix X in (2.6) as follows: X_{1} (if $p_{1}=i, c=-a_{1}=1$), Y_{1} (if $p_{1}=-i, c=-a_{1}=1$), U_{1} (if $q_{1}=u_{1}=\alpha=1$), V_{1} (if $q_{1}=-u_{1}=-\alpha=-1$), U_{1}^{\prime} (if $q_{1}=u_{1}=\alpha=i$), $V_{1}^{\prime}\left(\right.$ if $q_{1}=-u_{1}=-\alpha=-i$), X_{j} (if $p_{j}=z_{j}=1$), Y_{j} (if $p_{j}=-z_{j}=-1$), X_{j}^{\prime} (if $p_{j}=-z_{j}=i$), $Y_{j}^{\prime}\left(\right.$ if $p_{j}=z_{j}=-i$), U_{j} (if $q_{j}=w_{j}=1$), V_{j} (if $q_{j}=-w_{j}=-1$), U_{j}^{\prime} (if $q_{j}=w_{j}=i$), V_{j}^{\prime} (if $q_{j}=-w_{j}=-i$), for $j=1,2$, with all other entries zero for each one of the 22 cases. We have $\mathfrak{g}_{2 f_{0}}=\left\langle X_{1}, U_{1}, U_{1}^{\prime}\right\rangle, \mathfrak{g}_{f_{0}}=\left\langle X_{2}, X_{2}^{\prime}, U_{2}, U_{2}^{\prime}, X_{3}, X_{3}^{\prime}, U_{3}, U_{3}^{\prime}\right\rangle, \mathfrak{g}_{-2 f_{0}}=$ $\left\langle Y_{1}, V_{1}, V_{1}^{\prime}\right\rangle, \mathfrak{g}_{-f_{0}}=\left\langle Y_{2}, Y_{2}^{\prime}, V_{2}, V_{2}^{\prime}, Y_{3}, Y_{3}^{\prime}, V_{3}, V_{3}^{\prime}\right\rangle$. We have the Iwasawa decomposition $\mathfrak{s p}(3,1)=\mathfrak{k}+\mathfrak{a}+\mathfrak{n}$, where $\mathfrak{n}=\mathfrak{g}_{f_{0}}+\mathfrak{g}_{2 f_{0}}=\left\langle X_{1}, U_{1}, U_{1}^{\prime}, X_{j}, X_{j}^{\prime}, U_{j}, U_{j}^{\prime}\right\rangle_{j=1,2}$. The centralizer of \mathfrak{a} in \mathfrak{k} is

$$
Z_{\mathfrak{k}}(\mathfrak{a})=\left\{\left(\begin{array}{rrrrrrrr}
i a_{1} & 0 & 0 & 0 & u_{1} & 0 & 0 & 0 \\
0 & i a_{2} & z & 0 & 0 & u_{2} & w & 0 \\
0 & -\bar{z} & i a_{3} & 0 & 0 & w & u_{3} & 0 \\
0 & 0 & 0 & i a_{1} & 0 & 0 & 0 & -u_{1} \\
-\bar{u}_{1} & 0 & 0 & 0 & -i a_{1} & 0 & 0 & 0 \\
0 & -\bar{u}_{2} & -\bar{w} & 0 & 0 & -i a_{2} & z & 0 \\
0 & -\bar{w} & -\bar{u}_{3} & 0 & 0 & -z & -i a_{3} & 0 \\
0 & 0 & 0 & \bar{u}_{1} & 0 & 0 & 0 & -i a_{1}
\end{array}\right): \begin{array}{l}
a_{j} \in \mathbb{R}, \\
u_{j}, w, z \in \mathbb{C} \\
(1 \leqslant j \leqslant 3)
\end{array}\right\},
$$

and $Z_{\mathfrak{k}}(\mathfrak{a}) \cong \mathfrak{s p}(2) \oplus \mathfrak{s p}(1)$. We consider the basis $\left\{B_{l}, C_{j}, D_{j}, F_{j}\right\}_{1 \leqslant l \leqslant 4,1 \leqslant j \leqslant 3}$ of $Z_{\mathfrak{k}}(\mathfrak{a})$ whose elements are defined as follows: B_{1} (if $z=1$), B_{2} (if $z=i$), B_{3} (if $w=1$), B_{4} (if $w=i$), C_{1} (if $a_{1}=1$), C_{2} (if $u_{1}=1$), C_{3} (if $u_{1}=i$), D_{1} (if $a_{2}=1$), D_{2} (if $u_{2}=1$), D_{3} (if $u_{2}=i$), F_{1} (if $a_{3}=1$), F_{2} (if $u_{3}=1$), F_{3} (if $u_{3}=i$), with all other entries zero for each one of the 13 cases. The subspaces $\left\langle C_{1}, C_{2}, C_{3}\right\rangle$ and $\left\langle B_{l}, D_{j}, F_{j}\right\rangle_{1 \leq l \leq 4,1 \leq j \leq 3}$ are ideals of $Z_{\mathfrak{k}}(\mathfrak{a})$ isomorphic to $\mathfrak{s p}(1)$ and $\mathfrak{s p}(2)$, respectively. Moreover, $\left\langle D_{1}, D_{2}, D_{3}\right\rangle$ and $\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ are Lie subalgebras of $Z_{\mathfrak{k}}(\mathfrak{a})$ isomorphic to $\mathfrak{s p}(1)$.

The elements of $\mathfrak{k}=\mathfrak{s p}(3) \oplus \mathfrak{s p}(1)$ defined by the matrices of the form (2.6) given by

$$
E_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i
\end{array}\right), \quad E_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), \quad E_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & i \\
0 & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right)
$$

generate a compact ideal $\mathfrak{u} \cong \mathfrak{s p}(1)$ of \mathfrak{k}, and the isotropy representation $\mathfrak{u} \rightarrow \mathfrak{g l}(\mathfrak{p})$ defines a quaternionic Kähler structure on $A_{S p(3,1)}$. From the isomorphisms $\mathfrak{p} \cong \mathfrak{s p}(3,1) / \mathfrak{k} \cong \mathfrak{a}+\mathfrak{n}$ we obtain the complex structures $J_{i}(i=1,2,3)$ acting on $\mathfrak{a}+\mathfrak{n}$, which are given in the following table.

	A_{0}	X_{1}	U_{1}	U_{1}^{\prime}	X_{2}	X_{2}^{\prime}	U_{2}	U_{2}^{\prime}	X_{3}	X_{3}^{\prime}	U_{3}	U_{3}^{\prime}
J_{1}	$-X_{1}$	A_{0}	U_{1}^{\prime}	$-U_{1}$	$-X_{2}^{\prime}$	X_{2}	U_{2}^{\prime}	$-U_{2}$	$-X_{3}^{\prime}$	X_{3}	U_{3}^{\prime}	$-U_{3}$
J_{2}	$-U_{1}$	$-U_{1}^{\prime}$	A_{0}	X_{1}	$-U_{2}$	$-U_{2}^{\prime}$	X_{2}	X_{2}^{\prime}	$-U_{3}$	$-U_{3}^{\prime}$	X_{3}	X_{3}^{\prime}
J_{3}	$-U_{1}^{\prime}$	U_{1}	$-X_{1}$	A_{0}	$-U_{2}^{\prime}$	U_{2}	$-X_{2}^{\prime}$	X_{2}	$-U_{3}^{\prime}$	U_{3}	$-X_{3}^{\prime}$	X_{3}

The basis $\left\{A_{0}, X_{1}, U_{1}, U_{1}^{\prime}, X_{j}, X_{j}^{\prime}, U_{j}, U_{j}^{\prime}\right\}_{j=2,3}$ of $\mathfrak{a}+\mathfrak{n}$ is orthonormal with respect to the scalar product \langle, defined in $\mathfrak{a}+\mathfrak{n}$ by the isomorphism $\mathfrak{p} \cong \mathfrak{a}+\mathfrak{n}$ and $\frac{1}{40} B_{\mid \mathfrak{p} \times \mathfrak{p}}$, where B is the Killing form of $\mathfrak{s p}(3,1)$, and $\left(\mathfrak{a}+\mathfrak{n},\langle\rangle,, J_{1}, J_{2}, J_{3}\right)$ is a quaternion-Hermitian vector space.

2.3.1. Homogeneous descriptions of $A_{S p(3,1)}$ and homogeneous quaternionic Kähler structures

We will now obtain the homogeneous descriptions of $\mathbb{H H}(3)$ and the corresponding homogeneous quaternionic Kähler structures. There are only two parabolic subalgebras of $\mathfrak{s p}(3,1)$ and they are parametrized by the subsets Π and \emptyset of $\Pi=\left\{f_{0}\right\}$.
The case $\Psi=\Pi$. In this case, $\mathfrak{e}_{\Pi}^{\prime}=\mathfrak{a}_{\Pi}=\mathfrak{n}_{\Pi}=\{0\}$, and hence the refined Langlands decomposition is $\mathfrak{p}_{\Pi}=$ $\mathfrak{s p}(3,1)+\{0\}+\{0\}+\{0\}$. By Theorem 3, the only transitive action coming from $\Psi=\Pi$ is that of the full isometry group $S p(3,1)$. This gives the description of $A_{S p(3,1)}=\mathbb{H} H(3)$ as the symmetric space $S p(3,1) /(S p(3) \times S p(1))$. The associated reductive decomposition is the Cartan decomposition $\mathfrak{s p}(3,1)=(\mathfrak{s p}(3) \oplus \mathfrak{s p}(1))+\mathfrak{p}$, and the corresponding homogeneous quaternionic Kähler structure is $S=0$.
The case $\Psi=\emptyset$. We have $\mathfrak{r}^{\prime}=\mathfrak{a}+Z_{\mathfrak{k}}(\mathfrak{a})=\mathfrak{r}_{\emptyset}^{\prime}+\mathfrak{e}_{\emptyset}^{\prime}+\mathfrak{a}_{\emptyset}$, with $\mathfrak{r}_{\emptyset}^{\prime}=\{0\}, \mathfrak{e}_{\emptyset}^{\prime}=Z_{\mathfrak{k}}(\mathfrak{a})$, and $\mathfrak{a}_{\emptyset}=\mathfrak{a}$. The refined Langlands decomposition of the corresponding parabolic subalgebra is $\mathfrak{p}_{\emptyset}=\{0\}+Z_{\mathfrak{k}}(\mathfrak{a})+\mathfrak{a}+\mathfrak{n}=$ $\{0\}+(\mathfrak{s p}(2) \oplus \mathfrak{s p}(1))+\mathfrak{a}+\left(\mathfrak{g}_{f_{0}}+\mathfrak{g}_{2 f_{0}}\right)$. For each connected closed subgroup E of $E_{\emptyset}^{\prime} A \cong S p(2) S p(1) \mathbb{R}$ we get a cocompact subgroup $E N$ of $S p(3,1)$. By Theorem 4, in order to get a transitive action on $A_{S p(3,1)}$ it is sufficient that the projection $\mathfrak{e} \subset Z_{\mathfrak{k}}(\mathfrak{a})+\mathfrak{a} \rightarrow \mathfrak{a}$ be surjective.

Suppose that \mathfrak{e} is an one-dimensional subspace of $Z_{\mathfrak{k}}(\mathfrak{a})+\mathfrak{a}=\left\langle A_{0}, B_{k}, C_{l}, D_{l}, F_{l}\right\rangle_{1 \leq k \leq 4,1 \leq l \leq 3}$ such that the projection of \mathfrak{e} to \mathfrak{a} is an isomorphism. Then the Lie subalgebra $\mathfrak{e}+\mathfrak{n}$ of $\mathfrak{s p}(3,1)$ generates a connected Lie subgroup $\hat{G}=E N$ which acts simply transitively on $A_{S p(3,1)}$. We can suppose that \mathfrak{e} is generated by one element of the form $\hat{A}_{0}=A_{0}+\sum_{k=1}^{4} \gamma_{k} B_{k}+\sum_{l=1}^{3}\left(\lambda_{l} C_{l}+\mu_{l} D_{l}+\nu_{l} F_{l}\right)$, where $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right) \in \mathbb{R}^{4}, \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}\right), \nu=\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in \mathbb{R}^{3}$. This defines the reductive decomposition $\hat{\mathfrak{g}}^{\lambda, \mu, \nu, \gamma}=\{0\}+\hat{\mathfrak{g}}^{\lambda, \mu, \nu, \gamma}$ associated with the description $A_{S p(3,1)}=E_{\lambda, \mu, v, \gamma} N$, where $\hat{\mathfrak{g}}^{\lambda, \mu, \nu, \gamma}=\left\langle\hat{A}_{0}, X_{1}, U_{1}, U_{1}^{\prime}, X_{j}, X_{j}^{\prime}, U_{j}, U_{j}^{\prime}\right\rangle_{j=1,2}$. If all the parameters $\gamma_{k}, \lambda_{l}, \mu_{l}, \nu_{l}$ are zero, we have $\mathfrak{e}=\mathfrak{a}$, which gives the usual description of $A_{S p(3,1)}$ as the solvable Lie group $A N$. So, we get a 13-parameter family of structures $S^{\lambda, \mu, \nu, \gamma}$ associated with these reductive decompositions. With the identifications in (1.2), we give the values at o of the structure $S=S^{\lambda, \mu, \nu, \gamma}$ corresponding to this reductive decomposition. First, for $S_{A_{0}}($.$) we have$

$$
\begin{aligned}
& S_{A_{0}} A_{0}=0, \quad S_{A_{0}} X_{1}=2 \lambda_{2} U_{1}^{\prime}-2 \lambda_{3} U_{1}, \\
& S_{A_{0}} U_{1}=2 \lambda_{1} U_{1}^{\prime}+2 \lambda_{3} X_{1}, \quad S_{A_{0}} U_{1}^{\prime}=-2 \lambda_{1} U_{1}-2 \lambda_{2} X_{1}, \\
& S_{A_{0}} X_{2}=\left(\mu_{1}-\lambda_{1}\right) X_{2}^{\prime}+\left(\lambda_{2}-\mu_{2}\right) U_{2}+\left(\lambda_{3}-\mu_{3}\right) U_{2}^{\prime}-\gamma_{1} X_{3}+\gamma_{2} X_{3}^{\prime}-\gamma_{3} U_{3}-\gamma_{4} U_{3}^{\prime}, \\
& S_{A_{0}} X_{2}^{\prime}=\left(\lambda_{1}-\mu_{1}\right) X_{2}+\left(\lambda_{2}+\mu_{2}\right) U_{2}^{\prime}-\left(\lambda_{3}+\mu_{3}\right) U_{2}-\gamma_{1} X_{3}^{\prime}-\gamma_{2} X_{3}+\gamma_{3} U_{3}^{\prime}-\gamma_{4} U_{3}, \\
& S_{A_{0}} U_{2}=\left(\lambda_{1}+\mu_{1}\right) U_{2}^{\prime}+\left(\mu_{2}-\lambda_{2}\right) X_{2}+\left(\lambda_{3}+\mu_{3}\right) X_{2}^{\prime}-\gamma_{1} U_{3}+\gamma_{2} U_{3}^{\prime}+\gamma_{3} X_{3}+\gamma_{4} X_{3}^{\prime}, \\
& S_{A_{0}} U_{2}^{\prime}=-\left(\lambda_{1}+\mu_{1}\right) U_{2}-\left(\lambda_{2}+\mu_{2}\right) X_{2}^{\prime}+\left(\mu_{3}-\lambda_{3}\right) X_{2}-\gamma_{1} U_{3}^{\prime}-\gamma_{2} U_{3}-\gamma_{3} X_{3}^{\prime}+\gamma_{4} X_{3},
\end{aligned}
$$

Table 4

	A_{0}	X_{1}	U_{1}	U_{1}^{\prime}	X_{2}	X_{2}^{\prime}	U_{2}	U_{2}^{\prime}	X_{3}	X_{3}^{\prime}	U_{3}
$S_{X_{1}}$	$-2 X_{1}$	$2 A_{0}$	0	0	$-X_{2}^{\prime}$	X_{2}	U_{2}^{\prime}	$-U_{2}$	$-X_{3}^{\prime}$	X_{3}	U_{3}^{\prime}
$S_{U_{1}}$	$-2 U_{1}$	0	$2 A_{0}$	0	$-U_{2}$	$-U_{2}^{\prime}$	X_{2}	X_{2}^{\prime}	$-U_{3}$	$-U_{3}^{\prime}$	X_{3}
$S_{U_{1}^{\prime}}$	$-2 U_{1}^{\prime}$	0	0	$2 A_{0}$	$-U_{2}^{\prime}$	U_{2}	$-X_{2}^{\prime}$	X_{2}	$-U_{3}^{\prime}$	U_{3}	$-X_{3}^{\prime}$
$S_{X_{2}}$	$-X_{2}$	$-X_{2}^{\prime}$	$-U_{2}$	$-U_{2}^{\prime}$	A_{0}	X_{1}	U_{1}	U_{1}^{\prime}	0	0	0
$S_{X_{2}^{\prime}}$	$-X_{2}^{\prime}$	X_{2}	$-U_{2}^{\prime}$	U_{2}	$-X_{1}$	A_{0}	$-U_{1}^{\prime}$	U_{1}	0	0	0
$S_{U_{2}}$	$-U_{2}$	U_{2}^{\prime}	X_{2}	$-X_{2}^{\prime}$	$-U_{1}$	U_{1}^{\prime}	A_{0}	$-X_{1}$	0	0	0
$S_{U_{2}^{\prime}}$	$-U_{2}^{\prime}$	$-U_{2}$	X_{2}^{\prime}	X_{2}	$-U_{1}^{\prime}$	$-U_{1}$	X_{1}	A_{0}	0	0	0
$S_{X_{3}}$	$-X_{3}$	$-X_{3}^{\prime}$	$-U_{3}$	$-U_{3}^{\prime}$	0	0	0	0	A_{0}	X_{1}	U_{1}
$S_{X_{3}^{\prime}}$	$-X_{3}^{\prime}$	X_{3}	$-U_{3}^{\prime}$	U_{3}	0	0	0	0	$-X_{1}$	A_{0}	$-U_{1}^{\prime}$
$S_{U_{3}}$	$-U_{3}$	U_{3}^{\prime}	X_{3}	$-X_{3}^{\prime}$	0	0	0	0	$-U_{1}$	U_{1}^{\prime}	A_{0}
$S_{U_{3}^{\prime}}$	$-U_{3}^{\prime}$	$-U_{3}$	X_{3}^{\prime}	X_{3}	0	0	0	0	$-U_{1}^{\prime}$	$-U_{1}$	X_{1}

$$
\begin{aligned}
& S_{A_{0}} X_{3}=\left(v_{1}-\lambda_{1}\right) X_{3}^{\prime}+\left(\lambda_{2}-v_{2}\right) U_{3}+\left(\lambda_{3}-v_{3}\right) U_{3}^{\prime}+\gamma_{1} X_{2}+\gamma_{2} X_{2}^{\prime}-\gamma_{3} U_{2}-\gamma_{4} U_{2}^{\prime} \\
& S_{A_{0}} X_{3}^{\prime}=\left(\lambda_{1}-v_{1}\right) X_{3}+\left(\lambda_{2}+v_{2}\right) U_{3}^{\prime}-\left(\lambda_{3}+v_{3}\right) U_{3}+\gamma_{1} X_{2}^{\prime}-\gamma_{2} X_{2}+\gamma_{3} U_{2}^{\prime}-\gamma_{4} U_{2} \\
& S_{A_{0}} U_{3}=\left(\lambda_{1}+v_{1}\right) U_{3}^{\prime}+\left(v_{2}-\lambda_{2}\right) X_{3}+\left(\lambda_{3}+v_{3}\right) X_{3}^{\prime}+\gamma_{1} U_{2}+\gamma_{2} U_{2}^{\prime}+\gamma_{3} X_{2}+\gamma_{4} X_{2}^{\prime} \\
& S_{A_{0}} U_{3}^{\prime}=-\left(\lambda_{1}+v_{1}\right) U_{3}-\left(\lambda_{2}+v_{2}\right) X_{3}^{\prime}+\left(v_{3}-\lambda_{3}\right) X_{3}+\gamma_{1} U_{2}^{\prime}-\gamma_{2} U_{2}-\gamma_{3} X_{2}^{\prime}+\gamma_{4} X_{2}
\end{aligned}
$$

The remaining values are given by Table 4.
Eq. (1.1) is satisfied, with the following nonzero values of θ^{i} at $o: \theta^{1}\left(A_{0}\right)=2 \lambda_{1}, \theta^{2}\left(A_{0}\right)=-2 \lambda_{2}, \theta^{3}\left(A_{0}\right)=-2 \lambda_{3}$, $\theta^{1}\left(X_{1}\right)=\theta^{2}\left(U_{1}\right)=\theta^{3}\left(U_{1}^{\prime}\right)=2$. We have $S=\Theta+T$, with $\Theta \in \mathcal{Q} \mathcal{K}_{12} \backslash \mathcal{Q} \mathcal{K}_{1} \cup \mathcal{Q} \mathcal{K}_{2}$, except for $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$. In this case $\Theta \in \mathcal{Q} \mathcal{K}_{1}$, with corresponding 1-form $\theta=2\left\langle A_{0}, \cdot\right\rangle$. As for T, we first have that $\vartheta=\frac{1}{14}\left\langle 11 A_{0}+\lambda_{1} X_{1}-\lambda_{2} U_{1}-\lambda_{3} U_{1}^{\prime}, \cdot\right\rangle$. To find the $\mathcal{Q} \mathcal{K}_{45}$-component, suppose first that at least one of the parameters $\lambda_{i}, \mu_{i}, i=1,2,3$, is nonzero. Computing, we get for instance for $\gamma_{3} \neq 0$ that $\left(T-T^{\vartheta}\right)_{A_{1} X_{2} U_{3}}=-\gamma_{3}$ and $F\left(T-T^{\vartheta}\right)_{A_{1} X_{2} U_{3}}=2 \gamma_{3}$. This also happens for the other parameters; hence the tensor $S \in \mathcal{Q} \mathcal{K}_{1345}$. If all the parameters vanish, then a computation with Maple shows that $S \in \mathcal{Q} \mathcal{K}_{134}$ (cf. [5]).

If $\operatorname{dim} \mathfrak{e}>1$ there exist other subgroups E of $E_{\emptyset}^{\prime} A \cong S p(2) S p(1) \mathbb{R}$ such that $E N$ acts transitively on $A_{S p(3,1)}$. Such groups E are isomorphic to some subgroup of $S p(2) S p(1) \mathbb{R}$ of the form $U(1) \mathbb{R}, U(1) U(1) \mathbb{R}, U(1) U(1) U(1) \mathbb{R}$, $S p(1) \mathbb{R}, S p(1) U(1) \mathbb{R}, S p(1) U(1) U(1) \mathbb{R}, S p(1) S p(1) \mathbb{R}, S p(1) S p(1) S p(1) \mathbb{R}, S p(2) \mathbb{R}$, or $S p(2) S p(1) \mathbb{R}$. However, the natural reductive decompositions defined by their actions do not provide new structures.

2.4. Types of homogeneous quaternionic Kähler structures

For each parabolic subalgebra \mathfrak{p}_{Ψ} of the Lie algebra of the full connected isometry group G of each 12-dimensional Alekseevsky space M, we have seen that the subgroups \hat{G} of G acting transitively on M are of the form $\hat{G}=L_{\Psi}^{\prime} E N_{\Psi}$, where L_{Ψ}^{\prime} is noncompact semisimple or trivial and N_{Ψ} is nilpotent. Moreover, E is a connected closed subgroup of $E_{\Psi}^{\prime} A_{\Psi}$ such that the projection of its Lie algebra $\mathfrak{e} \subset \mathfrak{e}^{\prime}{ }_{\Psi}+\mathfrak{a}_{\Psi}$ to $\mathfrak{a}{ }_{\Psi}$ is surjective (see Theorem 4). If this projection is an isomorphism we say that E is minimal; in this case the Lie group E is simply connected and abelian. In particular, we have obtained

Theorem 5. Let $G=K A N$ be the Iwasawa decomposition of each of the groups $S O_{0}(4,3), S U(3,2), S p(3,1)$. The homogeneous descriptions $L_{\Psi}^{\prime} E N_{\Psi} / H$ for E minimal, and the corresponding types of homogeneous quaternionic Kähler structures of the three Alekseevsky spaces of dimension 12 are given in the following table (where the figure in the fifth column, if any, stands for the number n of parameters of the corresponding n-parametric family of homogeneous quaternionic Kähler structures).

G/K	Ψ	$L^{\prime}{ }_{\Psi} E N_{\Psi} / H$	$\operatorname{dim} E$	n	type
$A_{S O} \mathrm{O}_{0}(4,3)$	Π	$S O_{0}(4,3) /(S O(4) \times S O(3))$	0		\{0\}
	\emptyset	AN	3		$\mathcal{Q K}_{12345}$
	Ψ_{1}	$\operatorname{Sl}(3, \mathbb{R}) A_{\Psi_{1}} N_{\Psi_{1}} / S O(3)$	1		$\mathcal{Q K}_{12345}$
	Ψ_{2}	$(S l(2, \mathbb{R}) \times \operatorname{Sl}(2, \mathbb{R})) A_{\Psi_{2}} N_{\Psi_{2}} /(S O(2) \times S O(2))$	1		$\mathcal{Q K}_{12345}$
	Ψ_{3}	$\mathrm{SO}_{0}(3,2) A_{\Psi_{3}} N_{\Psi_{3}} /(S O(3) \times S O(2))$	1		$\mathcal{Q K}_{135}$
	Ψ_{j}	$S l(2, \mathbb{R}) A_{\Psi_{j}} N_{\Psi_{j}} / \operatorname{SO}(2)(j=4,5,6)$	2		$\mathcal{Q K}_{12345}$
$A_{S U(3,2)}$	Π	$S U(3,2) / S(U(3) \times U(2))$	0		\{0\}
	\emptyset	$E_{\lambda, \mu} N$	2	4	$\mathcal{Q K}_{12345}$
	\emptyset	$A N=E_{0,0} N$	2		$\mathcal{Q K}_{12345}$
	Ψ_{1}	$S l(2, \mathbb{C}) E_{\lambda} N_{\Psi_{1}} / S U(2)$	1	1	$\mathcal{Q K}_{1345}$
	Ψ_{2}	$S U(2,1) E_{\lambda} N_{\Psi_{2}} / U(2)$	1	1	$\mathcal{Q K}_{12345}$
$A_{S p(3,1)}$	Π	$S p(3,1) /(S p(3) \times S p(1))$	0		\{0\}
	\emptyset	$E_{\lambda, \mu, v, \gamma} N$	1	13	$\mathcal{Q K}_{12345}$
	\emptyset	$E_{0, \mu, v, \gamma} N$	1	10	$\mathcal{Q K}_{1345}$
	\emptyset	$A N=E_{0,0,0,0} N$	1		$\mathcal{Q K}_{134}$

References

[1] D.V. Alekseevsky, Classification of quaternionic spaces with a transitive solvable group of motions, Math. USSR Izvestija 9 (1975) 297-339.
[2] D.V. Alekseevsky, V. Cortés, Isometry groups of homogeneous quaternionic Kähler manifolds, J. Geom. Anal. 9 (1999) 513-545.
[3] W. Ambrose, I.M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958) 647-669.
[4] M. Castrillón López, P.M. Gadea, J.A. Oubiña, Homogeneous quaternionic Kähler structures on eight-dimensional non-compact quaternion-Kähler symmetric spaces, Preprint.
[5] M. Castrillón López, P.M. Gadea, A.F. Swann, Homogeneous quaternionic Kähler structures and quaternionic hyperbolic space, Transform. Groups 11 (2006) 575-608.
[6] S. Cecotti, Homogeneous Kähler manifolds and T-algebras in $N=2$ supergravity and superstrings, Comm. Math. Phys. 124 (1989) 23-55.
[7] V. Cortés, Alekseevskian spaces, Diff. Geom. Appl. 6 (1996) 129-168.
[8] A. Fino, Intrinsic torsion and weak holonomy, Math. J. Toyama Univ. 21 (1998) 1-22.
[9] C.S. Gordon, E.N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988) 245-269.
[10] M. Goto, H.-C. Wang, Non-discrete uniform subgroups of semisimple Lie groups, Math. Ann. 198 (1972) 259-286.
[11] V.F. Kiričenko, On homogeneous Riemannian spaces with an invariant structure tensor, Dokl. Akad. Nauk SSSR 252 (1980) 291-293.
[12] B. de Wit, A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Comm. Math. Phys. 149 (1992) 307-333.
[13] D. Witte, Cocompact subgroups of semisimple Lie groups, Lie algebras and related topics, in: Proc. Res. Conf. (Madison, WI), in: Contemp. Math., vol. 110, 1990, pp. 309-313.
[14] J.A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965) 1033-1047.

[^0]: * Partially supported by DGICYT, Spain, under Grant MTM2005-00173.
 * Corresponding author. Tel.: +34 913944406; fax: +34 913944564.

 E-mail addresses: mcastri@mat.ucm.es (M. Castrillón López), pmgadea@iec.csic.es (P.M. Gadea), jaoubina@usc.es (J.A. Oubiña).

