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Abstract

For each Alekseevsky space of dimension 12, its description as a homogeneous Riemannian space, and the homogeneous
quaternionic Kéhler structures that it admits through Witte’s refined Langlands decomposition, are given.
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1. Introduction and preliminaries
1.1. Introduction

Quaternion—Kédhler symmetric spaces were classified by Wolf [14] and homogeneous quaternionic Kéhler
structures were classified by Fino [8] (cf. [5]). The study of the types of homogeneous quaternionic Kihler
structures appearing on negative quaternion—Ké&hler symmetric spaces arises as a natural question. These spaces are
Alekseevskian (Alekseevsky [1], Cortés [7]). That study was started in [5] for the quaternionic hyperbolic space and
in a previous paper by the authors [4] for the case of dimension 8.

In the present paper we obtain, for each Alekseevsky space of dimension 12, the homogeneous quaternionic Kihler
structures that it admits through Witte’s refined Langlands decomposition [13]. We first find the connected closed
cocompact subgroups acting transitively by isometries on each one of the 12-dimensional Alekseevsky spaces. We
further obtain the type of homogeneous quaternionic Kahler structures on each of these spaces, in terms of the five
primitive classes QK, ..., QK5 in Fino’s classification. Theorem 5 sums up some of the results throughout the paper.
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On the other hand, it is well known that Alekseevsky spaces play an important role in d = 4, N = 2 supergravity,
as target spaces of the hypermultiplet sector of sigma models (see among others Cecotti [6], de Wit and van
Proeyen [12]). To quote but an example of the interest in physics of the spaces studied in [4] and in the present
paper, we recall that they are spaces originated by either the c-map or by the ¢ o ¥ map, as follows. The real projective
spaces are the origin, under the ¢ o r map, of Alekseevsky spaces of rank 3, that is, the spaces 7 (p), with p > 0
(see [1,12,7]). The only symmetric space in the series is 7 (0) = SO¢(4,3)/S(0O(4) x O(3)), which comes from
(cor)(SO(1, 1)) = c((SU(1, 1)/U(1))?). The minimal couplings of vector multiplets in d = 4, N = 2 supergravity,
the complex hyperbolic spaces CH(n), originate under the c-map, the infinite series of rank 2 quaternion—Ké&hler
symmetric spaces SU (n,2)/S(U (n) x U(2)). In this paper, the case n = 3 is considered. The rank 1 quaternionic
hyperbolic space HH(n) comes by the c-map from pure d = 4 supergravity, i.e., from the empty special Kéhler
space.

1.2. Homogeneous quaternionic Kdhler structures

Let (M, g) be a connected, simply connected, and complete Riemannian manifold. Ambrose and Singer [3] gave
a characterization for (M, g) to be homogeneous in terms of a (1, 2) tensor field S, usually called a homogeneous
Riemannian structure. Let V be the Levi-Civita connection of g and R its curvature tensor. Then the manifold is
homogeneous if and only if the Ambrose—Singer equations Vg = 0, VR = 0, VS = 0, where V=V- S, are
satisfied.

Suppose now that (M, g, v) is a quaternion—Kihler manifold, where v denotes the distinguished rank 3 subbundle
of the bundle of (1, 1) tensor fields on M. Such a manifold is a homogeneous quaternion—Kdhler space if it admits
a transitive group of isometries [2]. We have (cf. [3,8]) as a corollary to Kiri¢enko’s theorem [11], that a connected,
simply connected, and complete quaternionic Kahler manifold (M, g, v) is homogeneous if and only if there exists
a tensor field S of type (1, 2) on M satisfying Vg = 0, VR =0,VS =0, V2 = 0, where V=V — S and (2 is
the canonical 4-form of (M, g, v). Ihen S is said to be a homogeneous quaternionic Kdihler structure on M. Defining
Sxyz = g(SxY, Z), the condition V{2 = 0 can be replaced by the equation

Sxnynz — Sxyz = 03(X)g(hY, hZ) —6*(X)g(Y, 1 Z), (1.1)

and the equations obtained by a cyclic permutation of the indices 1,2, 3, for certain differential 1-forms 6¢,
a = 1,2,3, where {J1, J2, J3} is a local basis of v satisfying the conditions Ju2 = -1, J,Jp = —IpJ, = J., for
each cyclic permutation (a, b, ¢) of (1,2, 3). Let (V, (,), J1, J2, J3) be a quaternion—Hermitian real vector space,
i.e., a 4n-dimensional real vector space endowed with an inner product (,) and operators Ji, J2, J3, satisfying
le = J22 = 132 = —1I, J1J, = —J»J1 = J3 and the two other similar relations, and (J, X, J,Y) = (X,Y),
a = 1,2, 3. Such a space V is the model for the tangent space at any point of a quaternion—Kéhler manifold. Consider
the space of tensors 7 (V) = {S € ®v3 v .S Xyz = —Sxzy}, and its vector subspace V of tensors satisfying
Eq. (1.1) with (, )}, 0% € V*. Then V = V+V whereV ={0e@V*: Oxyz = Za 1049X) (J,Y, Z),0% € V*},
and V = (T e 3V*: Txyz = —Txzy, Txyyvi,z = Txyz,a = 1,2, 3}. This decomposition of V is orthogonal
with respect to the scalar product (,) defined by (S, S’) = Zr s.1=1 Se,ese; Seru e where {€;},=1,...4x is an orthonormal

basis of V. The spaces Vand V decompose respectively into two and three subspaces, giving an orthogonal sum of five
subspaces which are invariant and irreducible under the action of Sp(n)Sp(1), as proved by using the next theorem.
Let E denote the standard representation of Sp(n) on C*'; S3E the 3-symmetric product of E; K the irreducible
Sp(n)-module of highest weight (2, 1,0, ...,0); H the standard representation of Sp(1) on C2: and S3H the four-
dimensional symmetric product of H. Denoting real representations with brackets and with the usual notation, we
have

Theorem 1 (Fino [8]). The space [E H]® (sp(1) ®sp(n)) of homogeneous quaternionic Kihler structures splits into
invariant and irreducible subspaces under the action of Sp(n)Sp(1) as [EH]+ [ES’H]+[EH)+[S?EH]+[KH).

Denoting by QK; the ith summand in Fino’s classification, we have
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Theorem 2 ([5]). If n > 2, then V decomposes into the direct sum of the following subspaces invariant and
irreducible under the action of Sp(n)Sp(1):

3
QK = {@ €V:Oxyz =) 0UaX) (Y. 2) 0 € v*},

a=1

3 3
oK, = {@ eV:Oxyz=) 0“X)(JY.Z), Y 6°0J, =0, 0"¢ V*},

a=1 a=1

3
oK;3 = {T eV:Tyyz = (X.V)0(2) — (X, Z0(¥) + Y _ (X, J¥)P(JaZ)

a=1

— (X, L Z2)0(J,Y)), 0 € V*} ,

. 1 :
QK4 = [T €Vilxyz=5 (TYZX —Tzxy + Y _(Tivizx — TJaZJaYX)> cen(T) = 0} :

a=1

. 1 3
OKs = {T eV :Txyz = ~1 <Tyzx —Tzyx + Z(TJ,,YJ,,ZX — TJaZJaYX))} .

a=1
Denoting the sum of classes QK; + QK ; by QK;; and so on, we have V=0Kp V= QK 345.
1.3. Cocompact subgroups acting transitively

Gordon and Wilson gave in [9] a theorem of characterization of the isometry groups acting transitively on
noncompact Riemannian symmetric spaces. We proved in [4] Theorem 4 below, which is related to Witte’s Theorem 3
and suffices for our purposes. The set-up is as follows. Let (M, g) be a connected noncompact Riemannian manifold
and G its full connected isometry group. If K is the isotropy group at any fixed pointo € M, then M = G /K. We look
for the subgroups G of G acting transitively by isometries on M. Defining K 5 = GNK,one musthave M = G/K &
and thus all the descriptions of (M, g) as a homogeneous Riemannian space. If G is a closed subgroup of G which
acts transitively on M, then it is cocompact, that is, G /é is compact.

The structure of the nondiscrete cocompact subgroups of a connected semisimple Lie group with finite center was
given by Witte in [13] (cf. [10]), as follows. Let g be the Lie algebra of such a Lie group, a a maximal R-diagonalizable
subalgebra of g, X the set of roots of (g, a), and g = go + > fex 8f the restricted-root space decomposition, with
go = a + Zg(a), where Zg(a) stands for the centralizer of a in £. Write XF for the set of positive roots with respect
to a certain notion of positivity for a*, and let I be the set of simple restricted roots. For each subset ¥ of I, let
[ @] be the set of restricted roots that are linear combinations of elements of ¥. Then, the standard parabolic subgroup
P% is defined as the connected subgroup of G having Lie algebra py = go + > rex+yw) 9f = U + nw, where
U'=90+2> feiw 87 =y +¢y +aw, with [, semisimple with noncompact summands, ¢';, compact reductive, ay
the noncompact part of the center of ', andnyg = ) fex+\[w) 8 nilpotent. On the Lie group level one has ([13]) the
refined Langlands decomposition POW =L, E'yAyNy and

Theorem 3 (Witte [13]). Let L be a connected normal subgroup of L/¢ and E a connected closed subgroup of

E/WA w. Then there is a closed cocompact subgroup G of G contained in Py with identity component G’ =LEN .
Moreover, every closed cocompact subgroup of G arises in this way.

Furthermore, we proved in [4].
Theorem 4. Let G be a connected semisimple Lie group with finite center and G = K AN an Iwasawa decomposition.

A connected closed cocompact subgroup G = LEN g of G acts transitively on M = G/K if and only if: (a) The
projections of the Lie algebra | C I = go + Zfe[&] grof Lto Zfez,‘ﬂw[u'/] gy and to aJy:, are surjective, aJ@ being
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the orthogonal complementto ay ina C go = ay + alw + Zg(a). (b) The projection of the Lie algebra ¢ C e’y-, +ay
of E to ay is surjective.

1.4. Homogeneous Riemannian structures on symmetric Alekseevsky spaces

The Alekseevsky spaces [1,7] are the nonflat quaternion—Kihler spaces which admit a simply transitive real
solvable group of isometries. The noncompact duals of the Wolf spaces are Alekseevsky spaces. Moreover, the
Alekseevsky spaces of dimension smaller than 16 are symmetric.

Let M be a connected noncompact quaternion—-Kéhler symmetric space. Then M = G/K, where G is the
connected component of the identity of the isometry group of M and K is the isotropy subgroup of G at a point
0 € M. We consider a Cartan decomposition g = £ 4 p of the Lie algebra g of G, and the Iwasawa decomposition
g = t+a-+n, where £ is the Lie algebra of K, a C p is a maximal R-diagonalizable subalgebra of g, and n is a nilpotent
subalgebra. Let A and N be the connected abelian and nilpotent Lie subgroups of G whose Lie algebras are a and n,
respectively. The solvable Lie group AN acts simply transitively on M. Suppose now that G is a connected closed Lie
subgroup of G which acts transitively on M. The isotropy group of this actionato = K € Mis H = K = GNK.

Then M = G /K has also the description M = G /H,ando = H € G /H. Consider a reductive decomposition of the
Lie algebra g of G, that is, a vector space direct sum § = b + m, where b is the Lie algebra of H and Ad(H)m C m.
Since G is connected and M is simply connected then H is connected, and the condition Ad(H)m C m is equivalent
to [h, m] C m. We have the isomorphisms of vector spaces

pPEg=G/HEMET,(M) Za+n, (1.2)

with &:p > m, pim > T,(M), and ¢: T,(M) = a+n, given by §1(Z) = Zp and u(Z) = Z} for Z € m, and
X)) =X »for X € a+n, where, for each X € g, X* denotes the vector field on M generated by the one-parameter
subgroup {exp ¢ X} of G acting on M. The scalar product induced in a 4 n by the isomorphisms in (1.2) and a positive
multiple of B|pxp, Where B is the Killing form of g, define a left-invariant Riemannian metric on AN such that AN is
isometric to M. _ _

The reductive decomposition § = b + m defines the homogeneous Riemannian structure S = V — V, where V is
the canonical connection of M = G /H with respect to § = h + m, and it is G-invariant and uniquely determined by
(Vx<Y*)o = —[X, Y]}, for X, Y € m. Now, if X € g = £+ p, we write X = X¢ + Xp, (Xg € 8, Xp € p), and if
X, Y € m, then (Xp); = 0 and (V(Xp)*), = 0, hence Sx:Y; = [X¢, Ypl;. Thus, foreach X, ¥ € a + n, we have

Sxx Yy = Sex:E(Yp), = [(E(Xp)e Yl (1.3)

The quaternionic structure on M is defined by a three-dimensional ideal u = (Eq, E;, E3) = sp(1) of € where
[El, E2] = 2E3, [E2, E3] = 2E4, [E3, E1] = 2E>. The endomorphisms adg, of p, (1 < i < 3), and the
isomorphisms in (1.2) define the complex structures J; € End(a+n), (1 < i < 3), which make (a+n, (, ), J1, J2, J3)
a quaternion—Hermitian vector space.

As 2 is G-invariant, we have V{2 = 0, so S is also a homogeneous quaternionic Kihler structure. On the other
hand, in [4] we get formula (1.4) below, which furnishes explicitly the coefficients 6, a = 1, 2, 3, in Eq. (1.1). First,
notice that the Lie subgroup of K generated by ut is a normal subgroup isomorphic to Sp(1), and there exist an ideal €,
of ¢ such that ¢ = u @ £, so that we can get a basis B = {E{, E3, E3, ...} of £ with the basic elements of u and some
elements of £;. We proved in [4] that the homogeneous Riemannian structure S on M = G/K associated with the
reductive decomposition § = b + m satisfies Eq. (1.1) with 1-forms 6, i = 1,2, 3, givenato = H € G/H = M by

0 (X5 = 20, (E(Xp))e), (1.4)
for each X € a + n, where {«, a2, a3, ...} is the dual basis of 5.

2. The three 12-dimensional Alekseevsky spaces

We want to obtain all the homogeneous descriptions of the Alekseevsky spaces of dimension 12. We rename
them as Aso,4,3y = S00(4,3)/S(04) x 0Q3)), Asuz = SU@B,2)/S(UQB) x U2)), and Agp3,1) =
Sp(3,1)/(Sp(3) x Sp(l)) = HH(3). As the center of each of the corresponding full isometry groups is finite,
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Theorems 3 and 4 apply. The quaternionic Kiahler structure of each one of these spaces is associated with a natural
structure of quaternion—Hermitian vector space on the Lie algebra a 4+ n of the solvable factor AN of an Iwasawa
decomposition of its full connected group of isometries. Moreover, to determine each homogeneous Riemannian
structure S, we will use (1.3) and the identifications given by (1.2). In particular, for every X € a 4 n, we will also
denote by X the vector X = (Xp); € T,(M), and we will give the values SxY = Sx:Y, for all X, Y in a suitable
basis of a+n. Each such structure S, defined by a reductive decomposition § = h+m, is a homogeneous quaternionic
Kihler structure, and formula (1.4) will allow us to calculate directly the forms 64 in (1.1).

2.1. The hyperbolic Grassmannian Agso,4,3)

The Lie algebra of SOy (4, 3) is

50(4,3) = {(;T g) esl(7,R): Aeso@d),C e 50(3)} .
The involution 7 of so(4,3) given by 7(X) = —XT defines the Cartan decomposition so(4,3) = £ + p, where
t = s50(4) @ so(3). We consider the subspace a of p defined by the matrices with real entries s at the positions (45)
and (54) (resp. s at (36) and (63); s3 at (72) and (27)). Then, a is a maximal R-diagonalizable subalgebra of so(4, 3),
and Zg(a) = {0}. Let A1, Ay and A3 be the elements of a defined by (s1, 52, s3) = (1,0, 0), (0, 1,0) and (0,0, 1),
respectively, which generate a. Let f; € a* such that f;(A;) = §;;. Then, the sets of positive roots and simple roots

(with respect to a suitable order in a*) are X+ = {fi£ 5, fix f3, L f3, f1, [, fland IT = {fi— f>, o— f3, f3)
respectively. The positive root vector spaces are given by

00 0 O O O O 0 0 O 0 0 0 O
00 0 O O OO0 0 0 O 0 0 0 O
00 0 r —r 0O 0 0 O r —-r 0 O
9fi+f = O 0 —r 0 0 r O , 9f—f = 00 —r O 0O —r O ,
00 —r 0 0 r O 00 —r O 0 —-r O
0O0 O r —r 0O 00 0 —r r 0 0
0O 0 0 O 0 0 0 0 O 0 0 0 O
0 0 0 O 0 0 0O 0 0 O 0O 0 O
O 0 0 r —r 0O o 0 0 r —r O O
0O 0 00 O OO0 0O 0 0 O 0O 0 O
gf1+f3= 0O — 0 O 0 0 r , gfl—f3: 0O —r O 0 0 0 —r s
O —r 00 0 0 r 0O —r 0 O 0O 0 —r
0O 0 00 O 0 O 0O 0 0 O 0O 0 O
o 0 0 r —r 0 O o 0 0 —r r 0 O
0O 0 0 0 0 0 O 0 O 0O 0 0 O 0
0O 0 r 00 —r O 0 O r 0 0 —r O
O —r 00 0 0 r O —r 0 0 O O -—r
Ohtfs = 0O 0 000 0 O , 9h—f3 = 0 O 0O 0 0 O 0 ,  (2.0)
0O 0 000 0 O 0 0 0O 0 0 O 0
O —r 0 0 0 O r O —r» 0 O 0 0 -—r
0O 0 r 00 —r O 0O 0 —r O 0 r 0
0 0 0 u —u 0 O 0O 0 u 00 —u O
0O 00 0 O 00O 0O 0 0 0 O0 0 O
0O 00 0 O 00O - 0 0 00O 0 O
gf = —u 0 0 0 0 0 O , g5 = 0O 0 0 00 0 O ,
—u 0 0 0 0 0 O 0O 0 0 00 0 O
o 00 0 0 00 - 0 0 00O 0 O
0O 0 0 0 0 00O 0O 0 0 0 0 0 O
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O u 0 0 0 0 —u
- 0 0 0 0 0 O
0O 00 0O O OO O
gp = 0O 0 0 0 O0O0 O , 2.2)
0O 00 0 OO0 O
0O 00 0O OO0 O
- 0 0 0 0 0 O

where r,u € R. The root vector spaces for the respective opposite roots are the corresponding sets of opposite
transpose matrices. For each f = f1 £ f2, f1 & f3, f = f3, let X be the generator of gy in (2.1) obtained by
putting » = 1 for each nonnull entry. For f = fi, f2, f3, let U be the generator of gy in (2.2) obtained by putting
u = 1 in each nonzero entry. Let also X y and U be the corresponding elements of g for the respective opposite
roots f € X\ XT. The restricted-root space decomposition is s0(4, 3) = a + Zfez gr.Now, weput X1 = Xp,1p,
Vo= X_p—p, Xo = Xpi—pp. Y2 = Xopiapp, X3 = Xpaps, V3 = Xofi—p3, Xa = Xpi—py, Ya = X_ppp,
Xs = Xptp. Vs =Xpp,. Xoe = Xp— 53, Y6 = X—p1p, Uj = Ufj, Vi = U_fj, (1 < j < 3). We have the
Iwasawa decomposition s0(4,3) = £+ a + n, where n = Zf62+ gy =(X;,U; :1<i<6;1<j<3).
The elements E1, E;, E3 of £ = 50(4) & s0(3) given by

0O 1 0 00 0O 0 0 -1 0 0 0 O 0O 0 o0 1 0 00O
-1 0 0 0 0 0 O 0 0 0 1 0 0O 0O o0 1 0 0 0O
0 0 0 1 0 0O 1 0 0 0 0 0O 0O -1 0 0 0 0 O
0 0 -1 0 0 0 O}, 0O -1 0 0 0 0 0}, -1 0 0 0 0 0 0],
0O 0 0 0 0 0O 0O 0 0 0 0 0O 0O 0 00 O0 0O
0O 0 0 0 0 0O 0O 0 0 0 0 0O 0O 0 00 0 0O
0O 0 0 0 0 00O 0O 0 0 0 0 00O 0O 0 0 0 0 00O

respectively, satisfy [E, E2] = 2E3, [E>, E3] = 2E, [E3, E1] = 2E>, and generate a compact ideal u = sp(1) of &.
The isotropy representation u — gl(p) defines a quaternionic Kihler structure on Agg,4,3). The action of each E; on
p and the isomorphisms p = s0(4, 3)/€ = a + n define the complex structures J; (i = 1, 2, 3) acting on a + n. The
action of each J; on the elements of the basis of a + n is given by

Aq Ap Az Uy U, U,
I —5(X1+Xo) —3(X| = X2) —Us —3(X3+ Xy) —3 (X5 + Xe) A3
Lo =Xz + Xy Us (X3 = Xy) X1+ X2) —Ay (X5 — Xg)
I=U —3 (X5 + Xe) —3 (X5 — Xe) Ay F(X| = X2) 3(X3—Xy)

X X, X3 Xy X5 Xg
Ji A+ A Al — Ay %(Xs—xﬁ)-i-lh —%(Xs—X6)+U1 —%(X3—X4)+U2 %(X3—X4)+U2
Lo —iXs+Xe)-Ui  AXs+Xe)—Ui A+ As Al —As TX1 - X)+Us X1 —X)-Us
oYX+ Xp-Uy X+ X)4U,  —I(X1+X2)-Us  —3(X1+X0)+Us Ay +43 Ay — A3

We consider the scalar product (, ) induced in a + n through the isomorphism p = a + n and 11—()B|p><p- This
product makes the basis orthogonal, with (A;, A;) = (U;,U;) = 1,(X;,X;) = 2,and (a +n, (,), J1, J2, J3) isa
quaternion—Hermitian vector space.

2.1.1. Homogeneous descriptions of Asos,3) and homogeneous quaternionic Kéhler structures

The different descriptions of Agg,4,3) as a homogeneous Riemannian space will follow from the refined Langlands
decompositions of the parabolic subalgebras p ¢ of s0(4, 3), by using Theorem 4. The standard parabolic subalgebras
of s0(4, 3) are parametrized by the family of all the subsets of II: IT, @, ¥ = {f1 — f2, f2 — f3}, Y2 = {f1 — f2, f3},
U3 ={fa— f3. 3}, s ={fi — o}, Y5 = {2 — f3}, Y6 = {/3}.

For each one of the eight cases there will exist only one possible choice of the normal subgroup L of the semisimple
Lie group L/y-, and of the subgroup E of E /WA w, so that G = LENy be a connected cocompact subgroup of
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Table 1
Al Ay A3 Uj U, Us X X, X3 X4 X5 X
Sa4y 0 0 0 0 0 0 0 0 0 0 0 0
Sa4 0 0 0 0 0 0 0 0 0 0 0 0
Say 00 0 0 0 0 0 0 0 0 0 0
Suyy ~Ui 0 0 A ;X1 =X ;(X3-X9) Uy Us ~Us U 0 0
Su, 0 U 0 —3(X1+X) A 1(Xs —Xg) Ui U 0 0 —Us Us
Su, 0 0 —-Us —%(X3+X4) —%(X5+X6) A3z 0 0 U, U, U, Uy
24,
-X; -X - -X -X X X
Sx, 1 1 0 U Uj 0 124, 0 6 5 4 3
24,
Sx, X2 X 0 U —U; 0 0 X5 X —X3 —X4
—2A,
S X3 0 X3 —U 0 U X X 241 0 X X
X3 3 3 —Us 1 6 5 245 2 1
24,
Sx, —X4 0 Xy Uz 0 -U —X5 X6 0 X1 —-X>
4 —243
24,
Sy 0 —X5 —X5 0 —U U X X -X -X 0
Xs 5 5 3 2 4 3 2 1 124,
24,
Sx, 0 —X6 X¢ O Us Uy X3 Xy —-X1 —Xy 0
6 —2A3

SOp(4, 3) which acts transitively on Agp,4,3). It must be L = L/W and £ = Ay, and hence G coincides with
the corresponding parabolic subgroup Py. On the other hand, the homogeneous Riemannian structures associated
with the reductive decompositions obtained in a natural way from the parabolic subalgebras py are homogeneous
quaternionic Kéhler structures. We will use (1.3) to determine these structures.

The case ¥ = II. We have [¥] = X, e’H = ag = ng = {0}, and p;7 = so(4,3) + {0} + {0} + {0}. The
present case gives the description as a symmetric space Agg,4,3) = SO00(4,3)/(SO(4) x SO(3)). The associated
reductive decomposition is the Cartan decomposition so(4, 3) = €+ p, with £ = so(4) @ s0(3), and the corresponding
homogeneous quaternionic Kihler structure is S = 0.

The case ¥ = {. The refined Langlands decomposition of the minimal parabolic subalgebra is py = {0} + {0} +a+n.
This provides the description of Ago,,3) as the solvable Lie group G = AN, where N is the nilpotent factor in the
Iwasawa decomposition of SOg(4, 3). The associated reductive decomposition is a + n = {0} + (a + n), and the
corresponding homogeneous quaternionic Kéhler structure S is given by Table 1.

Eq. (1.1) are satisfied, with the following nonzero values of 6' at o: 01 (Uz) = 01 (X)) = 0'(X3) = —0%(U>) =
02(X3) = 0°(Xa) = 0°(U1) = 6°(Xs5) = 07 (Xe) = 1.
The case ¥ = Wy. Then [¥1] = {£(fi1 — f2), £(f2 — f3), (/i — f3)}, and py, = Uy + {0} + ay, + 0y,
where ay, = (A] + Az + A3), ny, = (X1, X3, X5, Uy, Uz, Uz), and [/Wl = U.J@l + (X2, Y2, X4, Y4, X6, Ys),
afpl = (A — As, Ay — A3), that is

0 O 0 0 O 0 0
0 0 Xt x2 y2 ) 53
0 —x 0 X3 3 52 Y1 Xj, VjsSj eR
[/g’l = 0 —x» —x3 0 & 3 2 : 1<j<3), = sl(3, R).
0 y» y3 s1 0 —x3 —x s1+s+53=0
0 » s y3 x3 0 -—x
0 s3 y » x2 x 0
We have G = Py, = SIG,R)RNy,, and the isotropy algebra is h = gnNet = [’LD1 N (so(4) ®
50(3)) = ((X2)e, (X4)e, (Xe)p) = s0(3). We have the reductive decomposition py, = b + m, where m =

(A1, Az, A3, U1, Uz, Uz, X1, (X2)p, X3, (X4)p, X5, (X6)p), which is associated with the homogeneous description
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Asoy4,3) = SI3,R)RNy, /SO 3). The corresponding structure S is given at o by Table 1, except that Sy, (-) =
Sx,() = Sx,(-) = 0. Eq. (1.1) are satisfied with the following nonzero values of ' at o: ol(Uz) = 01(X)) =
—6%(U2) = 0%(X3) =67 (U1) = 6°(X5) = 1.

The case ¥ = W,. Then [¥;] = {£(f1 — f2), :l:f3} Py, = '% + {0} + ay, + ny,, where ag, = (A] + Ay),

ny, = (X1, X3, X4, X5, X¢, Uy, U3), and[g, _aw + (X2, Y2, U3, V3),ay, = (A1 — Ap, A3), thatis
O u 0 0 0 0 w
—u 0 0 0 0 0 1t
0O 0 0 x y —s O
[/1,2 0 0 —x 0 s y O):s,t,x,y,veR} =sl2,R) ®sl(2,R).
0O 0 y s 0 —x O
0 0 —s y x 0 O
v ¢+ O O 0 0 O

Since G = Py, = (SI2,R) x SI2,R)RNy, and h = [/g,2 Nt = ((Uz)g (X2)p = s0(2) @ s0(2), we have
Asoya,3) = (SI2,R) x SI2,R))RNy,/(SO(2) x §O(2)), whose natural associated reductive decomposition is
pw, = b+ m, where m = (A1, Az, A3, U1, Uz, (U3)p, X1, (X2)p, X3, X4, X5, X¢). Its structure S is given at o
by Table 1, except that Sy, () = Sx,(-) = 0. Eq. (1.1) are satisfied with the following nonzero values of 6 at o:
01(X1) = —0%(U2) = 6%(X3) = 0*(X4) = 03 (U1) = 0°(Xs5) = 03(Xe) = 1.

The case ¥ = W3. Then [¥3] = {:l:fz + f3, . £f3}and py, = / .t {0} + ay, +ny,, where ay, = (A1),

ny, = (X1, X2, X3, X4, Uy), and [/ o T (Xs, Y5, X¢, Yo, Uz, Va2, U3, Vi), aw = (A2, A3z), that is
0 uy up 0 0 vy v
—Uu] 0 x1 0 O Y1 t
—u —x; 0 0 O ) 2 Xj,Yj,Uj,vj,
[’% = 0 0 0O 0 0 O 01]: s, t € R =50(3,2).
0 0 0O 0 0 O 0 1<j<3
v V1 s 0 0 0 x
V] t v 0 0 —x O
We have G = Py, = SO00(3,2)RNy,, and h = [/% Nt = ((Ug (Uz)g (X5)g (Xo)g) =
50(3) @ s0(2), then Agoyu3 = SO00(3,2)RNy,/(SOB3) x $SO(2)), and py, = bh + m, where m =

(A1, Az, A3, U, (U2)p, (U3)p, X1, X2, X3, X4, (X5)p, (Xe)p). The corresponding structure S is given at o by
Table 1, except that Sy, () = Sy;(-) = Sxs(-) = Sx4(-) = 0. Eq. (1.1) are satisfied with the following nonzero
values of 6 at 0: 81 (X1) = 61(X») = 02(X3) = 0%(X4) = 03 (U)) = 1.

The case ¥ = ¥y4. Then [¥4] = {£(f1 — f2)} and py, = [’ .t {0} + ay, + ny,, where ay, = (A + Az, A3),
ny, = (X1, X3, X4, X5, X6, U1, Uz, U3), and [@4 = CLJ@4 + (Xz, Yz), A = (A] — Ay), thatis [/ , = s[(2, R). This
gives Aso,4,3) = SI(2, R)IR{ZNM/SO(Z), with the reductive decomposition p g, = h + m, where h = ((X2)g) =
50(2),and m = (A1, Az, A3, U, Uz, Uz, X1, (X2)p, X3, X4,_ X5, X6). The corresponding structure S is given at o by
Table 1, except that Sy, (-) = 0. Eq. (1.1) are satisfied with 6" at 0 as in ¥ = §J, except that 6'(X,) = 0.

The case ¥ = Ws. Then [¥s] = {£(f> — f3)} and pys = g5 + {0} + ay, + ny,, where ay, = (A1, Az + A3),
ngs = (X1, X2, X3, X4, X5,U1, Uz, Us), and 1y, = afPS + (X6, Y6), aJ{ps = (Ay — A3), thatis [} = sl(2, R).
This gives Aso,4,3) = SI(2, ]R)RzNg/S/SO(Z), with py, = b + m, where h = ((Xg)g) = 50(2), and m =
(A1, Ar, A3, Uy, Uy, Us, X1, X7, X3, X4, X5', (X6)p)- The corresponding structure S is given at o by Table 1, except
that Sx. () = 0. Eq. (1.1) are satisfied with 6" at 0 as in ¥ = ¢}, except that 63(Xe) = 0.

The case ¥ = Ws. Then [Ws] = {£f3} and py, = [/% + {0} + ay, + ny,, where ay, = (A1, A2),ny, =
(X1, X2, X3, X4, X5, X6, U1, Ua), and [y, = aj@ﬁ + (U3, V3), aJ@() = (A3), that is [ = s0(2,1) = sl(2,R).
This gives Aspy4,3) = SI(2, R)RZN%/SO(Z) and py, = bh + m, where h = ((U3)g) = s0(2),m =
(A1, Az, A3, U, Uz, (U3)p, X1, X2, X3, X4, X5, X6). The corresponding structure § is given at o by Table 1, except
that Sy, (-) = 0. Eq. (1.1) are satisfied with 6" at o asin ¥ = ¢, except that 0! (U3) = 0.
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Table 2
o F(T —T)xyz (T —T")xyz XYz

Y 2 (TA] +44A; + Az, ) -1 2 U, X,Up
14 F(A1+ Ay + Az, ) -z 3 X100y
1) (A + Az, ) 2 ) U Xo X,
¥3 %(Ala‘) 5 —% X3X1Xg
Ty o (1A} + 1145 + 243, ) L -4 X3X 1 Xg
Ws & (14A1 + 545 + 543, ) -3 B U1 XUy
e 2 (TAL +44, ) -2 L XoUiUs

Now, we know that such a structure S decomposes as S = @ + T, with @ € QKy, i.e., such that OxY =
% 22:1 04(X)J,Y,and T € OK345. The condition for the tensor @ to be in QK is 8¢ =0 o J;,a = 1,2, 3, for
some 1-form 6. Then, as some calculations show, we have in all the cases that © € QK12 \ QK| U QK,, except for
U3, where © € QK with corresponding 1-form 6 = (A, -). Further, since dim M = 12, the 1-form defining the
QK 3-component of T (see Theorem 2) is given by & = ﬁc 12. The respective values of ¢ are given by Table 2, so the
OK3-component of T never vanishes in these cases.

Let F:V — ]A/ be the operator defined by F(T)xyz = Tzxy + Tvzx + Zi:l(TJaZXJ,,Y + Ty,v1,2zx), having
eigenvalues 2 and —4, and respective eigenspaces QK34 and Qs (see Theorem 2). Consider T? € QK3 given by
T;?YZ = (X, )9 (Z)— (X, Z)z&‘(Y)+Zi=1 (X, I, N, Z2)— (X, J,Z)v(J,Y)), where ¥ is the above-mentioned
I-form. Then T — T% € QKus and we get F(T — T?)xyz = F(T)xyz — 2T}y ,. Computing, we have the values
for F(T — T?)xyz and (T — T?)xyz given in Table 2, where also the vectors X, ¥, Z chosen in each case appear.
Hence, the tensor S has a nonzero component in each primitive subspace Q/C;, fori = 1,..., 5, except for ¥3. In
this case, as the result for the choice of vectors X», U;, Us suggests, and a computation with Maple shows, we obtain
T—-TY ¢ Q5,80 8 € OK35.

2.2. The complex hyperbolic Grassmannian Asy (3,2)
The Lie algebra of SU (3, 2) is

su(3,2) = {(;T g) esl(5,C): Aeu@B),Ce u(2)} .
The involution 7 of su(3,2) given by 7(X) = —XT defines the Cartan decomposition su(3,2) = ¢ 4 p, where
t = s(u(3) & u(2)). We consider the subspace a of p defined by the matrices with real entries s; at the positions
(34) and (43) and s, at (25) and (52). Then a is a maximal R-diagonalizable subalgebra of su(3,2). Let Ay and
A be the generators of a defined by (s1, s2) = (1, 0) and (0, 1), respectively. Let f; and f, be the elements of a*
given by f;(A;) = &j;. Then, the set of positive roots and simple roots (with respect to a suitable order in a*) are
It ={fi% £.2f1,2f, f1, o} and IT = {f1 — f>, f>}, respectively. The positive root vector spaces are

0O 0 0 0 O O 0 0O 0 o0
0O 0 z —z O 0 0 z —z O
Ofi+fo = 0 -z 0 0 z , Ofi—fr = 0 -z 0 0 -—Z , 2.3)
0 -z 0 0 z 0 -z 0 0 -—Z
0O 0 z -z O 0O 0 -z z 0
0 0 O 0 O 0O 0 0 0 O
0 0 O 0 O 0 ix 0 0 —ix
g = 0 0 ix —ix O , 9 = 0O 0 0 O 0 , 2.4)
0 0 ix —ix O 0O 0 00 O
0 0 O 0 0 0 ix 0 0 —ix
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0 0 w —w O 0O w 0 0 —w
0O 0 0 0 O -w 0 0 0 O
gn = -w 0 0 0 O , g9p = 0O 0 0 0 O , 2.5)
-w 0 0 0 O O 0 0 0 o
O 0 0 0 O -w 0 0 0 O

where x € R, z, w € C. The root vector spaces for the respective opposite roots are the corresponding sets of opposite
conjugate transpose matrices. For each f = fi £ f», let X and X', be the generators of g in (2.3) obtained by
putting z = 1 and z = i, respectively, for each nonnull entry. For f = 2f; (1 < j < 2), let Uy be the generator
of gy in (2.4) obtained by taking x = 1 in each nonzero entry. For f = f; (1 < j < 2), let Py and P} be the
generators of g in (2.5) obtained by putting w = 1 and w = i, respectively, for each nonnull entry. Let also X ¢,
X } Uy, Py, P} be the corresponding elements of g for the respective opposite roots f € X\ XT. We put (for

/

J=L)Xi=XprpN1=X_p-p. X\ =X, . Y =X_f-p. Xo=Xp-p. Vo =X_f1p. X5 =X _,.
Yzl =X_f+p,Uj= szj’ Vi = U,ij, Pj = Pfj, Q;= P,fj, P]’- = P}j, Qlj = Pij'

The centralizer of a in € is Zg(a) = {i - diag(r,s,t,t,s) : r,s,t € Rr +2s 4+ 2t = 0}. Then C; =
diag(2i, 0, —i, —i, 0) and C, = diag(2i, —i, 0, 0, —i) generate Zg(a), and Zg(a) + a = (Cq, Ca, A1, A2) is a Cartan
subalgebra of su(3, 2). We so have the restricted-root space decomposition su(3, 2) = (Zg(a) +a) + > fex 85 We
also have the Iwasawa decomposition s1(3, 2) = €4+ a+n, where n = Zf62+ gr = (Xj, X;., Uj, Pj, P]’. j=1,2).

The elements

000 0 O 0 00 0 O 0 00 0O

0 00 0 O 0000 O 0 00 0O
Er=10 0 0 0 O], E,=10 0 0 0 O |, Es=10 0 0 0 O},

0 00 —i O 00 0 0 -1 0 0 0 0 i

00 0 0 0001 O 00 0 i O

of £ = s(u3) ® u(2)) C su(3,?2) satisfy [E1, E2] = 2E3, [Es, E3] = 2E1, [E3, E1] = 2E>, and the compact
subalgebra u = sp(1) generated by {E1, E2, E3} is an ideal of £. The isotropy representation u — gl(p) defines a
quaternionic Kihler structure on Agy (3,2). The action of each E; on p and the isomorphisms p = su(3,2)/E=a+n
determine the complex structures J; (i = 1, 2, 3) acting on a + n. The action on the elements A, X ;, X }, Uj, Pj, P]/.,
(j = 1,2) of the basis of a + n is given by

Al Ay X1 X’1 Xy X/2 U, Uy Py Pl/ P P2/

S =0 % X —-Xi X} —Xy Ay Ay Pl —P —P, P

h X1 —X)) AXi+X) A -U Al — Ay U JX|-xy)  —ix{+xy) PPy - —P|
—Ay +U» +U,

i -xy) Ixi+xh) U -Uy -A -U Ay —3(X1—X)) Axy+x)  -Pp P, P P
—Ap -Us —Ap

We consider the scalar product (, ) induced in a 4+ n by the isomorphism p = a + n and %B‘ pxp- This product
makes the basis orthogonal, with (A;, A;) = (U;, U;) = (Pj, Pj) = (ij, PJ’.) =1,(X;,Xj) = (X’/, X}) =2, and
(a+mn,{,), J1, J2, J3) is a quaternion—Hermitian vector space. '

2.2.1. Homogeneous descriptions of Asy3,2) and homogeneous quaternionic Kdhler structures

By using Theorems 3 and 4, and from the refined Langlands decompositions of the parabolic subalgebras of
s5u(3, 2), we will now obtain the homogeneous descriptions of Ay (3,2). The standard parabolic subalgebras of su(3, 2)
are parametrized by the subsets I1, ¥, ¥1 = {fi — f>} and ¥, = {f>} of II.

The case ¥ = II. We have [¥] = X, and e’H = a7 = nyy = {0}, so the refined Langlands decomposition
is p;7 = su(3,2) + {0} + {0} + {0}. The only transitive action coming from ¥ = II is that of the full isometry
group SU(3,2), and we have the description of Agy(3,2) as the symmetric space SU(3,2)/S(U(3) x U(2)). The
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Table 3
A Ay X X, X, X, U U P P Py P
S0 0 X r X1 X, rXo o 0 31 Py —30 P 211 Py 201 Py
Al —MX]  —MXp —aX)  —MXp +2X7 P| —2A, Py +322P; 30 P
Sa, 0 0 X naXq X5 naXo 0 o 31 P —3u1 Py 2u1 P 211 Py
2 —mX]  —m Xy Xy —uXp +2u2 P —2ua Py +3u2 Py —3u2Py
Sy, 20,0 X} -X X -X, 241 0 P P 0 0
Su, 02U, X} -X X -X, 0 24, 0 0 Pj —-p,
24, —2U,
Sx, —X| —X 0 0 X, x, —p P! P P
XA T 04, —20, 2 f2 T2 2 ! I
24, 2U;
! ! ! /
Sy =X —X} 0 24 20, X, X, Py -p, P —-p
_2U] 2A1 / / / /
Sx, —X» X, 0 X —-X'P P .y iy
Xy 2 2 12U, 24, 1 1 12 2 1 1
2U; 24,
! ! / /
Syt —X5 X, o, 0 Y X1 X| —P P, —P| P
Spp =P 0 P P; P -Pj Pl 0 A —U; F(X1 =Xy  F(X5—X))
Spp=P{ 0 P —P, Pj Py -P 0 U A T -xy) L —-x)
Sp, 0 -pP, P P/ P P 0 P —txi+Xy —ixp+xh Ay —U,
Sp; 0 —Py P ~Py P ~Py 0 -PIXi+X)  —iXi+X) U Ay

associated reductive decomposition is the Cartan decomposition su(3, 2) = s(u(3) & u(2)) + p, and the corresponding
homogeneous quaternionic Kihler structure is S = 0.

The case ¥ = (). Then [’Q) = {0}, e’@ = Zg(a), ag = a, so the refined Langlands decomposition of the minimal parabolic
subalgebra is pg = {0} + Zg(a) + a + n. For each connected closed subgroup E of E‘'A = U(1) x U(1) x R2 we
get a cocompact subgroup G = EN of SU(3,2), where N is the nilpotent factor in the Iwasawa decomposition of
SU (3, 2). In order to get a transitive action it is sufficient that the projection of ¢ C Zg(a) + a = (Cy, Cp, Ay, A3) to
a be surjective. There are infinitely many possible choices of such a subspace e.

Ifdime =2,thene =¢; ;, = (A{C1+A2Co+ A1, u1C1+p2Cr+Az), forsome A = (A1, A2), o = (11, 12) € R2,
and it generates the Lie subgroup E; , = R2 of SU(3,2) such that G = E; N acts simply transitively on
Asy3,2)- In particular, the choice ¢ = a gives the usual description of Agy(3,2) as the solvable Lie group AN.
The reductive decomposition associated with the description Asy32) = Ej, N is g~* = {0} + gM*, where gt =
(MC1+22C + A, 1 Cr + n2Cr + Az, X, X; Uj, Pj, P]f : j = 1,2). Then we have a four-parameter family of
homogeneous Riemannian structures S*'* corresponding to the family of reductive decompositions g** = {0} +g*H.
With the identifications in (1.2), § = S** is given at o by Table 3.

Eq. (1.1) are satisfied with the following nonzero values of 0 at 0: OL(A]) = A — Ag, 01(Ap) = ni — o,
oL(U) = -0 (Un) = 1, 0%(X)) = —0%(X2) = 03(X)) = —03(X,) = —2. We have S = O + T. It is easily seen
that @ € QK12 \ QK1 U QK». Since moreover we have 9 = 2—18(11A1 + TAy + (M1 — M)U — (1 — u2)Us, - ),
(T — T’9)X2UZX/1 = —%, and F(T — T’y)XQUZX/1 = —%, the tensor S has a nonzero component in each primitive
subspace QK;, i, ..., 5.

If dime = 3, we can write ¢ = (V{C1 + v2C2, L1C1 4+ 12Cy + Aq, u1C1 + u2Cy + Az), where A = (A1, A2),
u (w1, ), v = (v1, 1) € RZ The corresponding reductive decomposition is @ﬁ‘“ = b, + mM*, where
hy = (v1C1 +v2C2) = u(l) and mhH = (A C1 4+ 12C2 + Ap, 11 C1 + 12Ca + As, X, X;, Uj, Pj, P// j=1,2),
which gives Asy 32 = (U(1) x R%)N /U(1). The associated homogeneous quaternionic Kihler structures are the
structures S** above.

If dime = 4, the reductive decomposition is §' = b’ + m’, where §’ = py, ' = Zg(a) and m’ = a + n, which
gives the description Agy3,2) = (U(1) x U(1) x R2)N /(U (1) x U(1)). The associated structure S’ coincides with
the above structure S*#, for A = . = 0.
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The case ¥ = W¥1. Then [¥] = {£(fi—f2)}and py, = [’%—i—e’kpl—i-aq/l +ny,, with e’lpl =iR-diag(—4,1,1,1,1) =
(C1+Ca),ay, = (A1+A2), 0y, = (X1, X|, Ur, Us, Pi, P{, P, Pj)and [, = (A1 —A) + €3 + (X2, Y2, X}, 1),
= (C1 — C2) C Zg(a), and we have

0 0 0 0 0
0 ir Z w K
[’,"p1 = 0 -z —ir —-s w|:rnseR,z,weC} =sl2,0C).
0 w —s —ir —Z
0 =« w z ir

For each connected closed subgroup E of Py, whose Lie algebra ¢ is a nontrivial subspace of e/wl + ay,, we geta
cocompact subgroup G = LENg, of SU(3,2), with L = S§I(2,C). If e # e’lpl, then G acts transitively on Agy(3,2).

Ifdime = 1, we get Agy3,2) = SI(2, O)RN g, /SU(2). Foreach A € R, we have a subspace ¢ = ¢, of e/% +ay, =
(C14+C2, A1+ A3), generated by L(C1+C32)+ A1+ Az. One has the one-parameter family of reductive decompositions
g = b + m*, where the isotropy algebrais h = gne = Uy N s(u3) du)) = (C1 C2, (X2)e, (X)) = su(2)
and m* = (AM(C; + C2) + A1, AM(C1 + C2) + Ao, X1, Xl, (Xz)p, (Xz)p, Uy, U, P, P Pz, ) The associated one-
parameter family of structures S = S* is given at o by the values in Table 3 except that S x, () = Sx,(-) =0, and with
M=l =u=Uy= k Eq. (1.1) are satisfied with the following nonzero values of 0/ ato: 01 (U)) = -0 (1) = 1,
0% (X1) = 03 (X)) =

Wehave S = O+T. It is easily seen that @ € QKC; with associated form 6 = (A1 + Az, - ). As for the specific type
of T inside QK 345, we first have that, as ¢ = %(Al + Ay, - ), the QK3-component of T does not vanish. Computing
as before, we get (T — T”)leéx1 = —% and F(T — Tﬂ)U]XéX] = #. Hence T — TV € QK45 \ QK4 U OKs.
Hence S € OK1345.

If dime = 2, that is, ¢ = (C; + C3, A; + A2) = u(l) & R, we have the reductive decomposition
g = b + ', where §/ = ([/W1 + e/g,l) Nsu3) & uR)) = (C1,C2, (X (X)e = u(l) & su(2), and

= (A1, A2, X1, X, (X2)p, (X))p, U1, Uz, Py, P{, P2, P}). This gives the description Asy3,2) = SI(2, C)(U(1) x
R)Ny, /(U(1) x SU(2)). The associated structure S" coincides with the above structure S*, for A = 0.
The case ¥ = W,. Then [¥p] = {£2f>,+/} and py, = [’g,2 + e’g,z + ay, + nyg,, where e/% = i-
Rdiag(2,2, -3, -3,2) = (3C; — 2C3),ay, = (A1), ny, = (X1, X/ , X2, X2’ Uy, P, P ) and [q«, = (A2) +
¢y, + (U2, Va, P2, 02, P;, Q5), ¢ = (C2) C Ze(a), and we have

i(r+s) v 0 0 w
—v —ir 0 0 z
[/%: 0 0 00 0 |:rseR, v,w,zeC} =su®2,1).
0 0O 0 0 O
w z 0 0 —is

For each connected closed subgroup E of Py, whose Lie algebra e is a nontrivial subspace of e/% +ayg,, e # e’%,
we get a cocompact subgroup G = LEN g, of SU (3, 2), with L = SU (2, 1), which acts transitively on Agy (3,2).

If dim ¢ = 1, we obtain Asy32 = SUQ2,1)RNy,/U(2). In fact, for each one-dimensional subspace ¢
of e/% +ay, = (3C; — 2C, Ay), with ¢ # e’w , we have a reductive decomposition. We can suppose that
e = ¢, is generated by A(3C; — 2C2) + Ay, for a certain A € R. So we get a one-parameter family of reductive
decompositions §* = h + m*, where h = g* N ¢ = [y, Ns@) ®u(2) = (Ca2, (Ve (P (P = u(2),
and m* = (A(3C; —2C2) + Ay, Az, X1, X!, X2, X5, U1, (U2)yp, P1, P{, (P2)p, (P})p). The associated one-parameter
family of homogeneous structures S = S* is given at o by the values in Table 3 except that S4,(-) = Sy,(-) =
Sp() =S P () = 0and with A1 = 3A, A, = —2A. Equations Eq. (1.1) are satisfied with the following nonzero values
of 0" ato: 01(Ay) = 51,01 (U)) = 1, 02(X)) = —0%(Xp) = 03(X)) = —03(X}) = -2

We have S = @ + T, with © € QKp \ QK| U QK. Since moreover we have ¢ = 21—8(7A1 + 50U, -),
(T — Tﬁ)Xle;Q = %, and F(T — Tﬂ)X.szé = —%, the tensor S has a nonzero component in each primitive
subspace QK;, i, ..., 5.
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If dime = 2, then ¢ = (3C; — 2C2, A1) = u(l) ® R, and we have the reductive decomposition § =
h' +m', where ' = g'nt = ([/g,2 + e’%) N suB) ®uR) = (C1,C2, (U2)e. (P, (Pe) = u(l) @ u(2),
and m'w2 = (A1, Ay, X1, X, X2, X}, Uy, (Up)p, P1, P{, (P2)p, (P})p), which is associated with the description
Asuz = SUR,DUA) x R)Ng,/(U(1) x U(2)). The corresponding structure S’ coincides with the above
structure S*, for A = 0.

2.3. The quaternionic hyperbolic space Agsp3,1) = HH(3)

The Lie algebra sp(3, 1) can be described as the subalgebra of gl(8, C) of all matrices of the form

z Pt w0
P ic (0] o
X = - = = - 2.6
W o' z —pT (2.6)
0 —a —P —ic
iaj 22 Z; uj wy w3 .
where Z = (- iaa z ) € u@@), W = (w wup w )is complex symmetric, c € R, « € C, and
-3  —z1 a3 w3 wyp U3

P = (p1, p2, p3),>Q = (1,92, q3) € C3. The involution t of sp(3, 1) given by 7(X) = —XT defines the Cartan
decomposition sp(3, 1) = € + p, where

zZ 0 W 0 o P 0o OF
_ 0 ic 0 «a ~ Jle o o o
0 —a 0 -—ic 0 0 —-P 0

The element Ag of p obtained by taking P = (1,0,0) and Q = (0,0, 0) generates a maximal R-diagonalizable
subalgebra a of sp(3, 1). The set of roots X' corresponding to a is X = {%fo, £2fo}, where fo € a* is given

by fo(Ap) = 1. The set I = {fp} is a system of simple roots and the corresponding positive root system
is X7 = {fo,2fo}. We have generators X;, Y}, X}, Yj’., U;, Vi, Uj’., ij of the root spaces g¢, f € X, which are
represented by the matrix X in (2.6) as follows: X1 (if p1 = i,c = —a1 = 1), Y1 (if p1 = —i,c = —a; = 1), U
(fgr =ur =a=1),V({fq = —u1 = —a=-1),U](fqr =u; =a =10), V] (ifq = —u; = —a = —i),
XjGfpj=z;=01,Y;(f pj =—z; = —1), X} (f pj = —z; =), Y]’. (ifpj=2z; =—-)U;(fqgi=w;j=1),
Vi (fqg; = —w; = 1), U]’. (if g; = w; =), V]{ (if g = —w; = —i), for j = 1,2, with all other entries

zero for each one of the 22 cases. We have gz, = (X1, U1, U|), g5y = (X2, X}, Ua, Uj, X3, X5, U3, Uj), g2, =
(Y1, Vi, V), g5, = (Y2, Y}, V2, V}, Y3, Y3, V3, V;). We have the Iwasawa decomposition sp(3, 1) = €+a+n, where
n=gy, + 825, = (X1, U, U, Xj, X}, Uj, U}) j=1 2. The centralizer of a in s

ial 0 0 0 ui 0 0 0
0 iap z 0 0 up w 0
0 -z a3 0 0 w u3 0
Zu(@) = 0 0 0im 0 0 0 —umf Y ewRéec
@, 0 0 0 —ia 0 0 0 (11’< ey |
0 —ita —w 0 0 —ia z 0 STS
0 —w —u3 0 0 —z —ias 0
0o 0 0 i 0 0 0 —ia

and Zg(a) = sp(2) @ sp(1). We consider the basis {By, C;, D;, Fj}i1<i<4,1<j<3 of Zg(a) whose elements are defined
as follows: By (if z = 1), By (ifz = i), B3 (if w = 1), B4 (if w = i), Cy (ifa; = 1), Cp (ifu; = 1), C3 (if u; = i),
D (ifay = 1), Dy (ifuy = 1), D3 (ifupy =1i), F| (ifas = 1), F» (ifus = 1), F3 (if us = i), with all other entries zero
for each one of the 13 cases. The subspaces (C1, C2, C3) and (By, Dj, Fj)1<i<4,1<j<3 are ideals of Zg(a) isomorphic
to sp(1) and sp(2), respectively. Moreover, (D1, D>, D3) and (F, F>, F3) are Lie subalgebras of Zg(a) isomorphic
to sp(1).
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The elements of £ = sp(3) @ sp(1) defined by the matrices of the form (2.6) given by

000 0 0 0 00 000 0
0 i 0 0 0 0 0 1 000 i
Ei=1lo 00 of° 2=lo 0o oo|l° B=loo o0 o0
00 0 —i 0 -1 0 0 0 i 00

generate a compact ideal u = sp(1) of €, and the isotropy representation u — gl(p) defines a quaternionic Kdhler
structure on Agp(3,1). From the isomorphisms p = sp(3, 1)/€ = a+n we obtain the complex structures J; (i =1, 2, 3)
acting on a + n, which are given in the following table.

Ap X1 Uy U{ Xo X/2 Uy Ué X3 Xé Uy Ué
Ji -Xi Ao U{ -U —X/2 X, U2’ -Uy —Xg X3 Ué —Uj
J -U fUi Ag X -Up fUé X, X/2 —Us 7U3’ X3 Xé
I3 —U{ Uy -X1 Ag —Ué U, —X/2 X5 —U3’ Us —Xé X3

The basis {Ag, X1, U1, Uy, X, X}, Uj, U}}j=2,3 of a + n is orthonormal with respect to the scalar product (, )

defined in a + n by the isomorphism p = a + n and %Bmxp, where B is the Killing form of sp(3, 1), and
(a+mn,(,), J1, J2, J3) is a quaternion—Hermitian vector space.

2.3.1. Homogeneous descriptions of Asp(3,1) and homogeneous quaternionic Kdhler structures

We will now obtain the homogeneous descriptions of HH(3) and the corresponding homogeneous quaternionic
Kiéhler structures. There are only two parabolic subalgebras of sp(3, 1) and they are parametrized by the subsets I7
and ¥ of IT = { fo}.

The case W = II. In this case, e’H = aj7 = nj7 = {0}, and hence the refined Langlands decomposition is p;; =
sp(3, 1) + {0} 4+ {0} + {0}. By Theorem 3, the only transitive action coming from ¥ = [I is that of the full isometry
group Sp(3, 1). This gives the description of Ay (3,1) = HH(3) as the symmetric space Sp(3, 1)/(Sp(3) x Sp(1)). The
associated reductive decomposition is the Cartan decomposition sp(3, 1) = (sp(3)@sp(1))+p, and the corresponding
homogeneous quaternionic Kihler structure is § = 0.

The case ¥ = (). We have ' = a + Zg(a) = [ + ¢; + ay, with [[; = {0}, ¢j = Zg(a), and ay = a. The
refined Langlands decomposition of the corresponding parabolic subalgebra is py = {0} + Ze(a) + a + n =
{0} + (sp(2) ® sp(1)) + a + (g5, + g25,). For each connected closed subgroup E of E;A = Sp(2)Sp(HR we
get a cocompact subgroup EN of Sp(3, 1). By Theorem 4, in order to get a transitive action on Agy(3,1) it is sufficient
that the projection ¢ C Zg(a) + a — a be surjective.

Suppose that e is an one-dimensional subspace of Zg(a) + a = (Ao, Bk, Ci, Di, Fi)1<k<4,1<i<3 such that the
projection of ¢ to a is an isomorphism. Then the Lie subalgebra e 4+ n of sp(3, 1) generates a connected Lie subgroup
G = EN which acts simply transitively on Agp3,1). We can suppose that e is generated by one element of the
form Ay = Ao + Yf_, mBx + Yoy (M Cy + Dy 4 viFy), where y = (y1, v2, v3, va) € RY, A = (A1, A2, A3),
w = (@1, m2, #3), v = (v, v2,v3) € R3. This defines the reductive decomposition §**"7 = {0} + ghH"¥
associated with the description As,3,1y = Ej 4,0,y N, where ghrvy = (Ao, X1, Uy, U], X, X}, Uj, U;.)j=1’2. If
all the parameters yy, A, (4, v; are zero, we have e = a, which gives the usual description of A (3,1) as the solvable
Lie group AN. So, we get a 13-parameter family of structures S*+*++7 associated with these reductive decompositions.
With the identifications in (1.2), we give the values at o of the structure S = §**+¥*¥ corresponding to this reductive
decomposition. First, for S4,(.) we have

SapAo =0, SaoX1 =2K2U{—2)»3U1,

Sa Ui =20 U{ + 223X1, Sa Ui = —=201U; — 220X,

SagX2 = (1 — ADX5 + (k2 — u2) Uz + (A3 — u3)Us — y1 X3 + 2 X5 — y3Uz — yaUs,
SapXs = (1 — ) X2+ (2 + u2)Us — (A3 + u3)Us — y1 X5 — 2 X3 + y3Usz — yaUs,
SapUs = (M1 + p)Us + (2 — 22) Xa + (A3 4+ u3) X5 — 11Uz + »U; + v3 X3 + X5,
SapUy = —(h1 + u)Uz — (k2 + u2) X5 + (u3 — 23) X2 — y1U3 — 12Uz — 3 X5 + 14 X3,
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Table 4

Ag X U, Uj X5 X5 Uy U, X3 X Us U
Sx, —2X1 2A¢ 0 0 —X/2 Xo Ué -U, —Xé X3 Ué —Us3
Su, —2U; 0 2A¢ 0 Uy —Ué X Xé —-U3 —U3, X3 Xé
SU{ —-2U; 0 0 249 -U; U, X} X, -Uj Us —X} X3
Sx, -X5 -X) ~U, -Uj Ag X4 U, U{ 0 0 0 0
SX/2 —X/2 X —Ué Uy —X1 A —Ul/ Uy 0 0 0 0
Su, Uy Ué X»> —X/z Uy Ul, Ag —X1 0 0 0 0
Sué -Uj -U, X} X, -Uj -U X Ag 0 0 0 0
Sx; —-X3 fXg -Us fUé 0 0 0 0 Ag X Uy Ui
SXé —Xé X3 —Ué Uz 0 0 0 0 -Xi Ao —U{ Uy
Su, -U3 Ué X3 —Xé 0 0 0 0 U U]/ Ag —X1
SUé —Ué -U3 Xé X3 0 0 0 0 —Ul/ -U X1 Ag

SapX3 = (V1 —ADX5 4+ (A2 —v)Us + (A3 — 13)Us + 11 X2 + 2 X5 — 13Uz — y4Us,
SapXs = (1 —vD)X3 4+ (k2 +v2)Uj — A3 +13)Us + 11 X5 — 2 Xo + 13U — vaUs,
SagUs = (A1 +v)Us + (2 — 22) X3 + (A3 + v3) X3 + v1Uz + U + 13 X2 + v X5,
SagUs = =M +vU3z — O + v2) X5 + (13 — 13)X3 + 11Uy — Uz — 3 X5 + vaXa.

The remaining values are given by Table 4.

Eq. (1.1) is satisfied, with the following nonzero values of 6’ at 0: 6! (Ag) = 241, 02(Ag) = —2X2,03(Ag) = —2A3,
0'(X1)) = 02(U1) = 63(U)) = 2. Wehave S = O + T, with © € QK2 \ QK; U QK, except for
A = A2 = A3 = 0. In this case ©® € QKj, with corresponding 1-form 6 = 2(A, -). As for T, we first have
that ¥ = 1]—4(11A0 + M X1 — AU; — A3U7, ). To find the QK 45-component, suppose first that at least one of the
parameters A;, ui, I = 1,2, 3, is nonzero. Computing, we get for instance for y3 # 0 that (T — Tﬁ)A1X2U3 =—-»
and F(T — T?) A,X,U; = 2y3. This also happens for the other parameters; hence the tensor § € QKj34s. If all the
parameters vanish, then a computation with Maple shows that S € QK34 (cf. [5]).

If dime > 1 there exist other subgroups E of E(’AA = Sp(2)Sp(1)R such that EN acts transitively on Ag,3,1).
Such groups E are isomorphic to some subgroup of Sp(2)Sp(1)R of the form U ()R, U(1)U (DR, U(H)U (1)U (DR,
Sp(HR, Sp(HU DR, Sp(HU U DR, Sp(1)Sp(DHR, Sp(1)Sp(1)Sp(1)R, Sp(2)R, or Sp(2)Sp(1)R. However,
the natural reductive decompositions defined by their actions do not provide new structures.

2.4. Types of homogeneous quaternionic Kdhler structures

For each parabolic subalgebra p  of the Lie algebra of the full connected isometry group G of each 12-dimensional
Alekseevsky space M, we have seen that the subgroups Gof G acting transitively on M are of the form G = L'yENy,
where L'y, is noncompact semisimple or trivial and Ny is nilpotent. Moreover, E is a connected closed subgroup of
E';, Ay such that the projection of its Lie algebra e C ¢/;, +ay to ay is surjective (see Theorem 4). If this projection is
an isomorphism we say that E is minimal; in this case the Lie group E is simply connected and abelian. In particular,
we have obtained

Theorem 5. Let G = K AN be the Iwasawa decomposition of each of the groups SOy(4, 3), SU(3, 2), Sp(3, 1). The
homogeneous descriptions L/wE Ny /H for E minimal, and the corresponding types of homogeneous quaternionic
Kdihler structures of the three Alekseevsky spaces of dimension 12 are given in the following table (where the figure
in the fifth column, if any, stands for the number n of parameters of the corresponding n-parametric family of
homogeneous quaternionic Kdhler structures).



M. Castrillon Lopez et al. / Journal of Geometry and Physics 57 (2007) 2098-2113 2113

G/K v L'yENy/H dim E n type
As0p4.3) I S00(4,3)/(SO() x SO(3)) 0 {0}
@ AN 3 QK 12345
7 SIG.R)A g, Ny, /SO(3) 1 OK 12345
12 (SI(2,R) x SI(2, R)A g, Ny, /(SO(2) x SO(2)) 1 OK12345
73 $00(3,2)A gy Ny, /(SO(3) x SO(2)) 1 QK135
w; SIQR)A g, Ny, /SOQ@) (j =4,5.6) 2 QK 12345
AsU@3.2) I SU(3,2)/SUA3) x U(?2)) 0 {0}
9 Ey uN 2 4 QK 12345
0 AN = EooN 2 QK 12345
2 SIQ2,C)EN g, /SU(2) i i QK345
7, SUQ. DENy,/U(2) 1 1 OK 12345
AspGi1) I Sp(3, /(Sp(3) x Sp(1) 0 0}
0 Ej v,y N 1 13 OK12345
% Eo vy N 1 10 OK 1345
0 AN = Eq0,0,0N 1 QK134
O
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